期刊文献+
共找到390篇文章
< 1 2 20 >
每页显示 20 50 100
Q-Learning-Assisted Meta-Heuristics for Scheduling Distributed Hybrid Flow Shop Problems
1
作者 Qianyao Zhu Kaizhou Gao +2 位作者 Wuze Huang Zhenfang Ma Adam Slowik 《Computers, Materials & Continua》 SCIE EI 2024年第9期3573-3589,共17页
The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow S... The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness. 展开更多
关键词 Distributed scheduling hybrid flow shop META-HEURISTICS local search Q-LEARNING
下载PDF
An Elite-Class Teaching-Learning-Based Optimization for Reentrant Hybrid Flow Shop Scheduling with Bottleneck Stage
2
作者 Deming Lei Surui Duan +1 位作者 Mingbo Li Jing Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期47-63,共17页
Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid ... Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP. 展开更多
关键词 hybrid flow shop scheduling REENTRANT bottleneck stage teaching-learning-based optimization
下载PDF
An Improved Hyperplane Assisted Multiobjective Optimization for Distributed Hybrid Flow Shop Scheduling Problem in Glass Manufacturing Systems
3
作者 Yadian Geng Junqing Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期241-266,共26页
To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously con... To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously considered,namely,the maximum completion time and the total energy consumptions.Firstly,each solution is encoded by a three-dimensional vector,i.e.,factory assignment,scheduling,and machine assignment.Subsequently,an efficient initialization strategy embeds two heuristics are developed,which can increase the diversity of the population.Then,to improve the global search abilities,a Pareto-based crossover operator is designed to take more advantage of non-dominated solutions.Furthermore,a local search heuristic based on three parts encoding is embedded to enhance the searching performance.To enhance the local search abilities,the cooperation of the search operator is designed to obtain better non-dominated solutions.Finally,the experimental results demonstrate that the proposed algorithm is more efficient than the other three state-of-the-art algorithms.The results show that the Pareto optimal solution set obtained by the improved algorithm is superior to that of the traditional multiobjective algorithm in terms of diversity and convergence of the solution. 展开更多
关键词 Distributed hybrid flow shop energy consumption hyperplane-assisted multi-objective algorithm glass manufacturing system
下载PDF
Hybrid Flow Shop with Setup Times Scheduling Problem
4
作者 Mahdi Jemmali Lotfi Hidri 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期563-577,共15页
The two-stage hybridflow shop problem under setup times is addressed in this paper.This problem is NP-Hard.on the other hand,the studied problem is modeling different real-life applications especially in manufacturing... The two-stage hybridflow shop problem under setup times is addressed in this paper.This problem is NP-Hard.on the other hand,the studied problem is modeling different real-life applications especially in manufacturing and high performance-computing.Tackling this kind of problem requires the development of adapted algorithms.In this context,a metaheuristic using the genetic algorithm and three heuristics are proposed in this paper.These approximate solutions are using the optimal solution of the parallel machines under release and delivery times.Indeed,these solutions are iterative procedures focusing each time on a particular stage where a parallel machines problem is called to be solved.The general solution is then a concatenation of all the solutions in each stage.In addition,three lower bounds based on the relaxation method are provided.These lower bounds present a means to evaluate the efficiency of the developed algorithms throughout the measurement of the relative gap.An experimental result is discussed to evaluate the performance of the developed algorithms.In total,8960 instances are implemented and tested to show the results given by the proposed lower bounds and heuristics.Several indicators are given to compare between algorithms.The results illustrated in this paper show the performance of the developed algorithms in terms of gap and running time. 展开更多
关键词 hybridflow shop genetic algorithm setup times HEURISTICS lower bound
下载PDF
Differential evolution algorithm for hybrid flow-shop scheduling problems 被引量:9
5
作者 Ye Xu Ling Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第5期794-798,共5页
Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a... Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems. 展开更多
关键词 hybrid flow-shop (HFS) scheduling differential evolution (DE) local search.
下载PDF
A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine 被引量:9
6
作者 孙泽文 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1779-1788,共10页
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor... The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms. 展开更多
关键词 hybrid estimation of distribution algorithm teaching learning based optimization strategy hybrid flow shop unrelated parallel machine scheduling
下载PDF
Minimizing makespan in a two-stage hybrid flow shop scheduling problem with open shop in one stage 被引量:1
7
作者 DONG Jian-ming HU Jue-liang CHEN Yong 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第3期358-368,共11页
This paper considers a scheduling problem in two-stage hybrid flow shop, where the first stage consists of two machines formed an open shop and the other stage has only one machine. The objective is to minimize the ma... This paper considers a scheduling problem in two-stage hybrid flow shop, where the first stage consists of two machines formed an open shop and the other stage has only one machine. The objective is to minimize the makespan, i.e., the maximum completion time of all jobs. We first show the problem is NP-hard in the strong sense, then we present two heuristics to solve the problem. Computational experiments show that the combined algorithm of the two heuristics performs well on randomly generated problem instances. 展开更多
关键词 hybrid flow shop open shop Heuristic algorithm.
下载PDF
Integrated Production and Transportation Scheduling Method in Hybrid Flow Shop 被引量:1
8
作者 Wangming Li Dong Han +2 位作者 Liang Gao Xinyu Li Yang Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期112-131,共20页
The connection between production scheduling and transportation scheduling is getting closer in smart manufacturing system, and both of those problems are summarized as NP-hard problems. However, only a few studies ha... The connection between production scheduling and transportation scheduling is getting closer in smart manufacturing system, and both of those problems are summarized as NP-hard problems. However, only a few studies have considered them simultaneously. This paper solves the integrated production and transportation scheduling problem(IPTSP) in hybrid flow shops, which is an extension of the hybrid flow shop scheduling problem(HFSP). In addition to the production scheduling on machines, the transportation scheduling process on automated guided vehicles(AGVs)is considered as another optimization process. In this problem, the transfer tasks of jobs are performed by a certain number of AGVs. To solve it, we make some preparation(including the establishment of task pool, the new solution representation and the new solution evaluation), which can ensure that satisfactory solutions can be found efficiently while appropriately reducing the scale of search space. Then, an effective genetic tabu search algorithm is used to minimize the makespan. Finally, two groups of instances are designed and three types of experiments are conducted to evaluate the performance of the proposed method. The results show that the proposed method is effective to solve the integrated production and transportation scheduling problem. 展开更多
关键词 hybrid flow shop Integrated scheduling Task pool hybrid algorithm
下载PDF
基于MOMA的可重入混合流水车间调度问题研究 被引量:3
9
作者 秦红斌 李晨晓 +1 位作者 唐红涛 张峰 《系统仿真学报》 CAS CSCD 北大核心 2024年第1期131-148,共18页
针对可重入制造系统多具有多品种、大规模、混流生产等特点,构建带批处理机的可重入混合流水车间调度问题(reentrant hybrid flow shop scheduling problem with batch processors,BPRHFSP)模型,提出一种改进的多目标蜉蝣算法(multi-obj... 针对可重入制造系统多具有多品种、大规模、混流生产等特点,构建带批处理机的可重入混合流水车间调度问题(reentrant hybrid flow shop scheduling problem with batch processors,BPRHFSP)模型,提出一种改进的多目标蜉蝣算法(multi-objective mayfly algorithm,MOMA)进行求解。提出了单件加工阶段和批处理阶段的解码规则;设计了基于Logistic混沌映射的反向学习初始化策略、改进的蜉蝣交配和变异策略,提高了算法初始解的质量和局部搜索能力;根据编码规则设计了基于变邻域下降搜索的蜉蝣运动策略,优化了种群方向。通过对不同规模大量测试算例的仿真实验,验证了MOMA相比传统算法求解BP-RHFSP更具有效性和优越性。所提出的模型能够反映生产的基础特征,达到减少最大完工时间、机器负载和碳排放的目的。 展开更多
关键词 可重入混合流水车间 生产调度 批处理 蜉蝣算法 碳排放
下载PDF
Local Search Algorithm with Hybrid Neighborhood and Its Application to Job Shop Scheduling Problem
10
作者 黄文奇 曾立平 《Journal of Southwest Jiaotong University(English Edition)》 2004年第2期95-100,共6页
A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while sea... A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while search procedure get trapped at local optima and carry the search to areas of the feasible set with better prospect. New strategies used for breaking out of entrapments are presented and they are helpful for the procedure to improve local optima. A performance comparison of the proposed method with some best-performing algorithms on all 10-job, 10-machine benchmark problems and the other two problems generated by Fisher and Thompson (ie., FT6 and FT20)is made. The experiment results show the better optimal performance of the proposed algorithm. 展开更多
关键词 Job shop scheduling Local search hybrid neighborhood Off-trap strategy
下载PDF
考虑能耗和运输的有限缓冲区混合流水车间调度 被引量:1
11
作者 温廷新 关婷誉 《系统仿真学报》 CAS CSCD 北大核心 2024年第6期1344-1358,共15页
为解决生产调度不及时、加工过程中能耗过大等问题,构建了有限缓冲区混合流水车间调度优化模型。模型以最小化最大完工时间和车间总能耗为目标,将运输时间、广义能耗和缓冲区容量等资源限制作为约束,并应用开关机节能策略减少待机能耗,... 为解决生产调度不及时、加工过程中能耗过大等问题,构建了有限缓冲区混合流水车间调度优化模型。模型以最小化最大完工时间和车间总能耗为目标,将运输时间、广义能耗和缓冲区容量等资源限制作为约束,并应用开关机节能策略减少待机能耗,验证了优化模型的可行性;设计一种狮群算法,采用随机产生与贪婪选择相结合的种群初始化方法,提高初始解质量和求解效率,验证了狮群算法的优越性。实验结果表明:该算法能有效解决考虑能耗和运输时间的有限缓冲区混合流水车间调度问题,优化模型能依照实际需要进行柔性调节,达到制造型企业合理排产、节能减排的目的。 展开更多
关键词 混合流水车间 综合能耗 缓冲区 狮群算法 多目标优化
下载PDF
基于生产数据的混合流水车间动态调度方法研究 被引量:1
12
作者 顾文斌 刘斯麒 +2 位作者 栗涛 李育鑫 郑堃 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1242-1254,共13页
在智能制造背景下,物联网等信息技术为制造系统积累了大量数据,同时人工智能等先进方法为车间数据分析和实时控制提供了有效手段。因此,针对不相关并行机混合流水车间调度问题,提出了一种基于生产数据的动态调度方法,以实现订单完工时... 在智能制造背景下,物联网等信息技术为制造系统积累了大量数据,同时人工智能等先进方法为车间数据分析和实时控制提供了有效手段。因此,针对不相关并行机混合流水车间调度问题,提出了一种基于生产数据的动态调度方法,以实现订单完工时间最小化。首先以高质量调度方案为基础,从中提取生产特征和调度规则完成样本构建。其次使用Relief F算法过滤冗余生产特征,获得用于训练和预测的调度样本。然后采用融合鲸鱼优化算法的概率神经网络作为调度模型,实现基于调度样本的训练和预测过程。最后,实验结果表明,所提方法具有良好的特征选择能力和较高的预测精度,与其他实时调度方法相比具有更加优越的性能,可以有效地根据车间实时状态指导制造执行过程。 展开更多
关键词 混合流水车间 动态调度 生产特征选择 概率神经网络 鲸鱼优化算法
下载PDF
改进迭代贪婪算法求解可重入流水车间调度问题 被引量:1
13
作者 吴秀丽 李雨馨 +1 位作者 匡源 崔建杰 《计算机集成制造系统》 EI CSCD 北大核心 2024年第7期2364-2380,共17页
可重入混合流水车间是在混合流水车间的基础上增加了可重入特性,具有更高的调度复杂性。为了求解可重入混合流水车间调度问题,首先建立了调度优化模型,优化目标为最小化最大完工时间,然后提出一种带精英调整的学习型迭代贪婪算法(LIG-EA... 可重入混合流水车间是在混合流水车间的基础上增加了可重入特性,具有更高的调度复杂性。为了求解可重入混合流水车间调度问题,首先建立了调度优化模型,优化目标为最小化最大完工时间,然后提出一种带精英调整的学习型迭代贪婪算法(LIG-EA)。LIG-EA算法采用基于工件的编码方式,对重组后的染色体进行解码。种群分为精英个体和普通个体两部分,对精英个体进行精英破坏重建和基于关键工件的染色体调整,对普通个体进行学习机制的构建和普通个体的破坏重建。为提高初始种群质量,采用NEH启发式算法进行种群初始化,并针对可重入混合流水车间的重入特性,在重建操作中增加了插入有效性判断,提高了算法的运行速度。通过大量实验表明LIG-EA算法能够有效求解可重入混合流水车间调度问题。 展开更多
关键词 可重入混合流水车间调度 迭代贪婪算法 精英解集构建 关键工件调整 学习机制构建
下载PDF
面向柔性生产资源的分布式农机生产调度优化
14
作者 康立军 刘欢 +1 位作者 代永强 秦立静 《计算机工程与应用》 CSCD 北大核心 2024年第19期363-374,共12页
在经济全球化背景下,分布式制造和调度系统已成为大型农机生产企业的主流生产模式。针对农机生产过程中多品种小批量的生产特点,构建出一种分布式两阶段异构混合流水车间调度问题模型,提出了一种知识引导的分布估计算法,求解分布式异构... 在经济全球化背景下,分布式制造和调度系统已成为大型农机生产企业的主流生产模式。针对农机生产过程中多品种小批量的生产特点,构建出一种分布式两阶段异构混合流水车间调度问题模型,提出了一种知识引导的分布估计算法,求解分布式异构混合流水车间调度问题模型的子问题:工厂分配、工件加工顺序和加工机器分配。改进的分布估计算法融合了多种启发式构造和随机方法进行种群初始化,并对候选解进行迭代优化,通过对求解问题的特性进行分析,提高关键加工阶段加工资源的利用率,对于不同规模的调度问题提出了相应的知识引导的强化机制和多种局部搜索策略。通过仿真实验,将提出的算法与其他三类算法进行对比,验证了改进的分布估计算法的有效性和稳定性。实验结果表明,利用调度问题特性引导算法的演化过程,可有效地提升知识引导的分布估计算法对于分布式异构混合流水车间调度问题的求解效率。 展开更多
关键词 分布估计算法 混合流水车间调度 分布式调度 知识引导
下载PDF
具有紧时、高能耗特征的混合流水车间多目标调度优化问题
15
作者 常大亮 史海波 刘昶 《中国机械工程》 EI CAS CSCD 北大核心 2024年第7期1269-1278,共10页
针对具有紧时、高能耗工序特征的混合流水车间调度问题,以优化产品暴露时间、最大完工时间和能源消耗为目标,建立混合流水车间调度模型,并提出一种改进的多目标粒子群算法进行有效求解。首先构建了基于ISDE指标的档案维护策略及局部邻... 针对具有紧时、高能耗工序特征的混合流水车间调度问题,以优化产品暴露时间、最大完工时间和能源消耗为目标,建立混合流水车间调度模型,并提出一种改进的多目标粒子群算法进行有效求解。首先构建了基于ISDE指标的档案维护策略及局部邻域搜索策略,辅助算法跃出局部极值及减少生产阻塞。之后,提出一种基于模糊理论的决策分析方法选取最优调度方案。最后,通过仿真实验验证提出的多目标调度模型与算法的可行性和优越性。 展开更多
关键词 混合流水车间调度问题 多目标粒子群优化算法 紧时性约束 高能耗
下载PDF
含不相关机的多目标混合流水车间调度
16
作者 轩华 关潇风 王薛苑 《计算机工程与设计》 北大核心 2024年第1期315-320,F0003,共7页
考虑不相关机和传送等因素的多阶段混合流水车间问题,以最小化最大完工时间和总能耗为优化目标建立整数规划模型。针对该问题,提出一种多目标离散灰狼优化算法来求解。设计基于机器分配码和速度选择码的编码方式和基于最短处理时间原则... 考虑不相关机和传送等因素的多阶段混合流水车间问题,以最小化最大完工时间和总能耗为优化目标建立整数规划模型。针对该问题,提出一种多目标离散灰狼优化算法来求解。设计基于机器分配码和速度选择码的编码方式和基于最短处理时间原则的解码方案;采用反向学习策略改进初始灰狼种群质量;将基于多点变异的自走模式和基于均匀两点交叉与多点交叉的跟随模式结合构成搜索模式以协调开发和搜索能力;引入精英保留策略确保优良个体不丢失。通过一系列的仿真实验验证了该算法的有效性。 展开更多
关键词 多阶段混合流水车间 离散灰狼优化算法 不相关机 多目标优化 绿色调度 最小化最大完工时间 传送时间
下载PDF
带运输的混合流水车间调度问题的改进遗传算法
17
作者 许可 叶彩霞 孙文娟 《沈阳理工大学学报》 CAS 2024年第2期7-14,共8页
为实现分布式制造环境中上下游工序和机器间的协同生产,研究了带有运输的混合流水车间调度问题。以包含加工时间、运输时间和加工等待时间的完工时间最小为目标,建立了带有运输约束的混合流水车间调度模型,基于Q-learning设计了改进的... 为实现分布式制造环境中上下游工序和机器间的协同生产,研究了带有运输的混合流水车间调度问题。以包含加工时间、运输时间和加工等待时间的完工时间最小为目标,建立了带有运输约束的混合流水车间调度模型,基于Q-learning设计了改进的遗传算法(QGA)求解该模型。在该算法中,首先基于工件序号设计编码和遗传算子等遗传操作;然后根据种群适应度函数构建种群的状态集合,以交叉概率和变异概率的取值作为动作,以最佳个体适应度和种群平均适应度作为奖励;最后采用Q-learning对交叉和变异参数进行智能调整,提高算法的收敛速度与全局搜索能力。仿真实验结果表明,与改进的遗传算法(GA-TS)相比,本文QGA的最大完工时间平均减少了2.0%,收敛速度提升了18.1%。 展开更多
关键词 混合流水车间调度 运输时间 强化学习 遗传算法
下载PDF
基于改进遗传算法的混合流水车间批量调度问题求解
18
作者 宁方华 黄丙齐 周晓敏 《软件导刊》 2024年第2期84-91,共8页
针对多品种小批量混流生产模式中生产计划调度复杂的特点,提出解决批量问题的等量分批策略,实现工件在不同工序上同时加工,缩减机器等待时间;以最大完工时间为优化目标,建立混合流水车间批量调度问题数学模型;设计求解模型的改进遗传算... 针对多品种小批量混流生产模式中生产计划调度复杂的特点,提出解决批量问题的等量分批策略,实现工件在不同工序上同时加工,缩减机器等待时间;以最大完工时间为优化目标,建立混合流水车间批量调度问题数学模型;设计求解模型的改进遗传算法,使用NEH启发式算法和随机生成结合的方式生成优质初始解,采用二元锦标赛进行选择操作,采用二元交叉法进行交叉操作,采用插入变异生成新个体,并使用贪婪插入的领域搜索算法进行局部搜索,解码时采用“子批优先+先空闲先加工”策略。发动机连杆生产案例应用结果表明,混合流水车间批量调度问题模型与改进的遗传算法正确有效。 展开更多
关键词 混合流水车间 批量流 遗传算法 分批策略
下载PDF
基于遗传算法的混合Flow-shop调度方法 被引量:46
19
作者 王万良 姚明海 +1 位作者 吴云高 吴启迪 《系统仿真学报》 CAS CSCD 2002年第7期863-865,869,共4页
混合Flow-shop调度问题 (Hybrid flow-shop scheduling problem, HFSP),是一般Flow-shop调度问题的推广,由于在某些工序上存在并行机器,所以比一般的Flow-shop调度问题更复杂。本文提出了遗传算法求解混合Flow-shop调度问题的方法,给出... 混合Flow-shop调度问题 (Hybrid flow-shop scheduling problem, HFSP),是一般Flow-shop调度问题的推广,由于在某些工序上存在并行机器,所以比一般的Flow-shop调度问题更复杂。本文提出了遗传算法求解混合Flow-shop调度问题的方法,给出了一种新的编码方法,设计了相应的交叉和变异操作算子,能够保证个体的合法性,同时又具有遗传算法本身所要求的随机性。最后给出了某汽车发动机厂金加工车间的生产调度实例,表明了此算法的有效性。 展开更多
关键词 遗传算法 混合Flow-shop调度问题 组合优化问题 数学规划
下载PDF
双种群混合遗传算法求解航空复合材料柔性调度问题
20
作者 王玉芳 姚彬彬 +1 位作者 陈凡 曾亚志 《计算机工程与设计》 北大核心 2024年第10期3143-3152,共10页
考虑航空复合材料柔性车间调度中的运输约束,以最小化完工时间为目标,建立调度模型,提出一种改进的双种群混合遗传算法进行求解。根据问题特点,基于工序排序、机器选择和运输约束3个子问题,设计三层实数编码以及对应解码方案。采用混合... 考虑航空复合材料柔性车间调度中的运输约束,以最小化完工时间为目标,建立调度模型,提出一种改进的双种群混合遗传算法进行求解。根据问题特点,基于工序排序、机器选择和运输约束3个子问题,设计三层实数编码以及对应解码方案。采用混合初始化提高种群质量,进化过程中采用交叉算子执行全局搜索,为双种群设计基于机器负载平衡和变邻域的局部搜索,提高全局和局部搜索能力。与对比算法相比10个测试算例中BPRD指标取得9个最优,APRD指标全部取得最优,t检验显著性有明显差异,验证算法的优越性。将算法应用于航空复合材料车间中,实现实际生产的调度,验证算法的可行性。 展开更多
关键词 航空复合材料 柔性作业车间调度 双种群 混合遗传算法 运输约束 机器负载平衡 变邻域
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部