An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid in...An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection.展开更多
Metal–organic frameworks(MOFs) packed in the column have been a promising candidate as the stationary phase for high performance liquid chromatography(HPLC). However, the direct packing of irregular MOF powder could ...Metal–organic frameworks(MOFs) packed in the column have been a promising candidate as the stationary phase for high performance liquid chromatography(HPLC). However, the direct packing of irregular MOF powder could raise some problems like high back pressure and low column efficiency in the HPLC separation. In this work, UiO-66 capable of separating xylenes was supported effectively on the surface of the monodisperse spherical silica microspheres by one-pot method. The hybridization of Ui O-66 and silica microspheres(termed UiO-66@SiO2 shell–core composite) was prepared by stirring the suspension of the precursors of Ui O-66 and\\COOH terminated silica in the N,N-dimethylformamide with heating. The shell–core composite material UiO66@SiO2 was characterized by SEM, TEM, PXRD and FTIR. Then, it was used as a packing material for the chromatographic separation of xylene isomers. Xylene isomers including o-xylene, m-xylene and p-xylene were efficiently separated on the column with high resolution and good reproducibility. Moreover, the Ui O-66@SiO2 shell–core composites packed column still remained reverse shape selectivity as Ui O-66 possessed, and the retention of xylenes was probably ascribed to the hydrophobic effect between analytes and the aromatic rings of the Ui O-66 shell. The Ui O-66@SiO2 shell–core composites obtained in this study have some potential for the separation of structural isomers in HPLC.展开更多
The fabrication of an internal diffraction grating with photoinduced refractive index modification in planar hybrid germanium-silica plates was demonstrated using low-density plasma formation excited by a high-intensi...The fabrication of an internal diffraction grating with photoinduced refractive index modification in planar hybrid germanium-silica plates was demonstrated using low-density plasma formation excited by a high-intensity femtosecond (150 fs) Ti:sapphire laser (λp=790 nm).The refractive index modifications with diameters ranging from 400 nm to 3 μm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 2×1013 W/cm2.The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred.展开更多
Different types of carbon-silica fillers were prepared via pyrolysis-cum-water vapor of waste green tires tread and impregnation method. Dual phase fillers have been characterized by energy dispersive X-ray (EDX) spec...Different types of carbon-silica fillers were prepared via pyrolysis-cum-water vapor of waste green tires tread and impregnation method. Dual phase fillers have been characterized by energy dispersive X-ray (EDX) spectroscopy in a scanning transmission electron microscope (STEM) or STEM-EDX. Phase distribution in hybrid fillers for rubber was investigated. The results achieved show that the conditions of obtaining influence the distribution and the location of the phases in the carbon-silica hybrid fillers as well as their most essential characteristics including specific area, oil absorption number, iodine adsorption number, ash content and others.展开更多
In the present study, chitosan/carboxymethyl cellulose/silica hybrid membrane (CS/CMC/Silica) was prepared by using chitosan and carboxymethyl cellulose in the presence of 3-glycidoxypro- pyltrimethoxysilane (GPTMS) a...In the present study, chitosan/carboxymethyl cellulose/silica hybrid membrane (CS/CMC/Silica) was prepared by using chitosan and carboxymethyl cellulose in the presence of 3-glycidoxypro- pyltrimethoxysilane (GPTMS) as the crosslinking agent and used to remove Cr(VI) iron in effluent. The structure of CS/CMC/Silica hybrid membrane was characterized by FT-IR spectroscopy and scanning electron microscopy (SEM). The influence of Cr(VI) concentration, solution temperature, and pH, adsorption time on adsorption performance of hybrid membrane was investigated. Adsorption capacity increased with the increase of Cr(VI) concentration and absorbing time, and decreased with the increase of sorbent dosage and temperature. The adsorption equilibrium of Cr(VI) ion was attained within 60min of contact. The pseudo-second-order model fitted the kinetic data well.展开更多
Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom tran...Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom transfer radical polymerization (ATRP) of styrene, in the presence of citric acid (CA) as non-surfactant template or pore-forming agent and followed by ethanol extraction to remove template molecules. The materials were characterized by infrared spectroscopy OR), N-2 adsorption-desorption measurements, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The results indicate that the materials prepared with 50 wt%-60 wt% template contents have average pore sizes of 2-3 nm and large surface areas (ca. 886 m(2)/g) as well as high pore volumes (ca. 0.53 cm(3)/g). The mesoporosity arises from interconnected channels and pores with disordered arrangements. The pore diameters and pore volumes increase as the template content is increased. The pore diameters show a little change upon heating at 200degreesC overnight. However, the materials do not have good hydrothermal stability.展开更多
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid...Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.展开更多
Functionalized silica hybrid materials are extensively studied and applied materials in the field of science and technology. Functionalization is an approach, which allows for the application of organic components in ...Functionalized silica hybrid materials are extensively studied and applied materials in the field of science and technology. Functionalization is an approach, which allows for the application of organic components in the improvement of the design, properties and potential application of silicate materials. Silica hybrid materials, functionalized via incorporation of organic components (chitosan and methacrylic acid) were synthesized by the sol-gel method. The base silica structure of the hybrids was obtained via hydrolysis and condensation of the silicate precursor, tetraethyl orthosilicate. The investigations of synthesized hybrids are focused on the influence of the nature and quantity of functional organic components on their final structures and properties. The structural characteristics of obtained hybrid materials were investigated using XRD, FTIR, SEM and DTA/TG analysis. The obtained results presented the formation of amorphous porous structure and the organic components are evenly distributed into the silica network. The functional radicals of chitosan and methacrylic acid (amine, hydroxyl groups) exist in the hybrid structure as free reactive centers, as their quantity increases with increasing the organic amount. The swelling behavior in acidic and neutral solutions of the synthesized materials is investigated and the results presented, that the silicate materials exhibit hydrophilic character.展开更多
A polystyrene(PS)/nanosilica organic-inorganic hybrid material was prepared from styrene monomer and commercial aqueous silica sol containing large amounts of Si-OH by means of emulsion polymerization. The nanosilic...A polystyrene(PS)/nanosilica organic-inorganic hybrid material was prepared from styrene monomer and commercial aqueous silica sol containing large amounts of Si-OH by means of emulsion polymerization. The nanosilica sol was modified by the addition of the reactive coupling agent methacrylexy propyltrimethoxysilane ( MPS), and the resulting latex particles were protected by surfactants such as sodium dodecyl sulphonate( SDS), hydroxypropyl methyl cellulose ( HMPC), and poly (vinylpyrrolidone) (PVP). The effects of the type of surfactant, the amount of surfactant, and the coupling agent on the shape and stability of the resulting latex particles were investigated. The TEM observation indicates that among SDS, HMPC, and PVP, SDS is the best surfactant. When the content of SDS is 0. 5% and the amount of MPS is 7% in the system, the latex with obvious core-shell structure could be obtained. The average diameters of the monodispersed particles range from 182 to 278 nm, and the average number of silica beads for each composite are 1325 and 4409, respectively. The FrIR analysis shows that PS was chemically linked to silica through MPS. The thermal gravimetric analysis shows that when there is a higher silica content, the hybrid composites have a better heat resistance.展开更多
A separator film for high-performance Li-ion batteries was prepared by electrospinning. The film had a hybrid morphology of silica nanofibers(SNFs) and alumina nanoparticles(ANPs), with a smooth surface, polymer-free ...A separator film for high-performance Li-ion batteries was prepared by electrospinning. The film had a hybrid morphology of silica nanofibers(SNFs) and alumina nanoparticles(ANPs), with a smooth surface, polymer-free composition, high porosity(79%), high electrolyte uptake(876%), and excellent thermal stability. Contact angle measurements demonstrated the better immersion capability of the SNF-ANP separator film for commercial liquid electrolytes than a commercial CELGARD 2500 separator film. Moreover,compared to the commercial CELGARD 2500 separator, the ionic conductivity of the SNF-ANP separator film was nearly three times higher, the bulk resistance was lower at elevated temperature(120 ℃), the interfacial resistance with lithium metal was lower, and the electrochemical window was wider. Full cells were fabricated to determine the cell performance at room temperature. The specific capacity of the full cell with the SNF-ANP separator film was 165 mAh g-1;the cell was stable for 100 charge/discharge cycles and exhibited a capacity retention of 99.9%. Notably, the electrospun SNF-ANP separator film can be safely used in Li-ion or Li-S rechargeable batteries.展开更多
Hybrid organic-inorganic silica materials containing organic functional groups have been preparedby the reaction of activated silica with a silane coupling reagent such as N-(2-aminoethyl)3-aminopropyltrimethoxysilane...Hybrid organic-inorganic silica materials containing organic functional groups have been preparedby the reaction of activated silica with a silane coupling reagent such as N-(2-aminoethyl)3-aminopropyltrimethoxysilane. The hybrid silica was further modified by organic compounds having abifunctional group. These modified hybrid silicas were used as catalysts for various nucleophilic reactions.And also, these were complexed with metallic ions for use as catalysts for oxygen oxidation of hydrocarbons.展开更多
基金Supported by the National High Technology Research and Development Program of China under Grant No 2015AA016902the National Natural Science Foundation of China under Grant Nos 61435013 and 61405188the K.C.Wong Education Foundation
文摘An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection.
基金Supported by the National Natural Science Foundation of China(21722609,21776240)Zhejiang Provincial Natural Science Foundation of China(LR17B060001)
文摘Metal–organic frameworks(MOFs) packed in the column have been a promising candidate as the stationary phase for high performance liquid chromatography(HPLC). However, the direct packing of irregular MOF powder could raise some problems like high back pressure and low column efficiency in the HPLC separation. In this work, UiO-66 capable of separating xylenes was supported effectively on the surface of the monodisperse spherical silica microspheres by one-pot method. The hybridization of Ui O-66 and silica microspheres(termed UiO-66@SiO2 shell–core composite) was prepared by stirring the suspension of the precursors of Ui O-66 and\\COOH terminated silica in the N,N-dimethylformamide with heating. The shell–core composite material UiO66@SiO2 was characterized by SEM, TEM, PXRD and FTIR. Then, it was used as a packing material for the chromatographic separation of xylene isomers. Xylene isomers including o-xylene, m-xylene and p-xylene were efficiently separated on the column with high resolution and good reproducibility. Moreover, the Ui O-66@SiO2 shell–core composites packed column still remained reverse shape selectivity as Ui O-66 possessed, and the retention of xylenes was probably ascribed to the hydrophobic effect between analytes and the aromatic rings of the Ui O-66 shell. The Ui O-66@SiO2 shell–core composites obtained in this study have some potential for the separation of structural isomers in HPLC.
基金Project(2010-0008-277)supported by NCRC(National Core Research Center)Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology
文摘The fabrication of an internal diffraction grating with photoinduced refractive index modification in planar hybrid germanium-silica plates was demonstrated using low-density plasma formation excited by a high-intensity femtosecond (150 fs) Ti:sapphire laser (λp=790 nm).The refractive index modifications with diameters ranging from 400 nm to 3 μm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 2×1013 W/cm2.The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred.
文摘Different types of carbon-silica fillers were prepared via pyrolysis-cum-water vapor of waste green tires tread and impregnation method. Dual phase fillers have been characterized by energy dispersive X-ray (EDX) spectroscopy in a scanning transmission electron microscope (STEM) or STEM-EDX. Phase distribution in hybrid fillers for rubber was investigated. The results achieved show that the conditions of obtaining influence the distribution and the location of the phases in the carbon-silica hybrid fillers as well as their most essential characteristics including specific area, oil absorption number, iodine adsorption number, ash content and others.
文摘In the present study, chitosan/carboxymethyl cellulose/silica hybrid membrane (CS/CMC/Silica) was prepared by using chitosan and carboxymethyl cellulose in the presence of 3-glycidoxypro- pyltrimethoxysilane (GPTMS) as the crosslinking agent and used to remove Cr(VI) iron in effluent. The structure of CS/CMC/Silica hybrid membrane was characterized by FT-IR spectroscopy and scanning electron microscopy (SEM). The influence of Cr(VI) concentration, solution temperature, and pH, adsorption time on adsorption performance of hybrid membrane was investigated. Adsorption capacity increased with the increase of Cr(VI) concentration and absorbing time, and decreased with the increase of sorbent dosage and temperature. The adsorption equilibrium of Cr(VI) ion was attained within 60min of contact. The pseudo-second-order model fitted the kinetic data well.
基金This project was supported by the National Natural Science Foundation of China to K. Y. Qiu (Grant No. 29874002) and Outstanding Young Scientist Award to Y. Wei (Grant No. 29825504).
文摘Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom transfer radical polymerization (ATRP) of styrene, in the presence of citric acid (CA) as non-surfactant template or pore-forming agent and followed by ethanol extraction to remove template molecules. The materials were characterized by infrared spectroscopy OR), N-2 adsorption-desorption measurements, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The results indicate that the materials prepared with 50 wt%-60 wt% template contents have average pore sizes of 2-3 nm and large surface areas (ca. 886 m(2)/g) as well as high pore volumes (ca. 0.53 cm(3)/g). The mesoporosity arises from interconnected channels and pores with disordered arrangements. The pore diameters and pore volumes increase as the template content is increased. The pore diameters show a little change upon heating at 200degreesC overnight. However, the materials do not have good hydrothermal stability.
基金Project supported by the National Natural Science Foundation of China (No. 29874002) and the Outstanding Young Scientist Award from National Natural Science Foundation of China (No. 29825504)
文摘Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.
文摘Functionalized silica hybrid materials are extensively studied and applied materials in the field of science and technology. Functionalization is an approach, which allows for the application of organic components in the improvement of the design, properties and potential application of silicate materials. Silica hybrid materials, functionalized via incorporation of organic components (chitosan and methacrylic acid) were synthesized by the sol-gel method. The base silica structure of the hybrids was obtained via hydrolysis and condensation of the silicate precursor, tetraethyl orthosilicate. The investigations of synthesized hybrids are focused on the influence of the nature and quantity of functional organic components on their final structures and properties. The structural characteristics of obtained hybrid materials were investigated using XRD, FTIR, SEM and DTA/TG analysis. The obtained results presented the formation of amorphous porous structure and the organic components are evenly distributed into the silica network. The functional radicals of chitosan and methacrylic acid (amine, hydroxyl groups) exist in the hybrid structure as free reactive centers, as their quantity increases with increasing the organic amount. The swelling behavior in acidic and neutral solutions of the synthesized materials is investigated and the results presented, that the silicate materials exhibit hydrophilic character.
基金Supported by the National Natural Science Foundation of China(No. 50373037)the Special Funds for Major State BasicResearch Projects ( No. 2005CB623802) Specialized Research Fund for the Doctoral Program of Higher Education ( No.20040335077).
文摘A polystyrene(PS)/nanosilica organic-inorganic hybrid material was prepared from styrene monomer and commercial aqueous silica sol containing large amounts of Si-OH by means of emulsion polymerization. The nanosilica sol was modified by the addition of the reactive coupling agent methacrylexy propyltrimethoxysilane ( MPS), and the resulting latex particles were protected by surfactants such as sodium dodecyl sulphonate( SDS), hydroxypropyl methyl cellulose ( HMPC), and poly (vinylpyrrolidone) (PVP). The effects of the type of surfactant, the amount of surfactant, and the coupling agent on the shape and stability of the resulting latex particles were investigated. The TEM observation indicates that among SDS, HMPC, and PVP, SDS is the best surfactant. When the content of SDS is 0. 5% and the amount of MPS is 7% in the system, the latex with obvious core-shell structure could be obtained. The average diameters of the monodispersed particles range from 182 to 278 nm, and the average number of silica beads for each composite are 1325 and 4409, respectively. The FrIR analysis shows that PS was chemically linked to silica through MPS. The thermal gravimetric analysis shows that when there is a higher silica content, the hybrid composites have a better heat resistance.
基金financial support for this work from the National Key R&D Program of China (2016YFB0100100)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17000000)R&D Projects in Key Areas of Guangdong Province of the Guangdong Provincial Department of Science and Technology Agency (2019B090908001).
文摘A separator film for high-performance Li-ion batteries was prepared by electrospinning. The film had a hybrid morphology of silica nanofibers(SNFs) and alumina nanoparticles(ANPs), with a smooth surface, polymer-free composition, high porosity(79%), high electrolyte uptake(876%), and excellent thermal stability. Contact angle measurements demonstrated the better immersion capability of the SNF-ANP separator film for commercial liquid electrolytes than a commercial CELGARD 2500 separator film. Moreover,compared to the commercial CELGARD 2500 separator, the ionic conductivity of the SNF-ANP separator film was nearly three times higher, the bulk resistance was lower at elevated temperature(120 ℃), the interfacial resistance with lithium metal was lower, and the electrochemical window was wider. Full cells were fabricated to determine the cell performance at room temperature. The specific capacity of the full cell with the SNF-ANP separator film was 165 mAh g-1;the cell was stable for 100 charge/discharge cycles and exhibited a capacity retention of 99.9%. Notably, the electrospun SNF-ANP separator film can be safely used in Li-ion or Li-S rechargeable batteries.
文摘Hybrid organic-inorganic silica materials containing organic functional groups have been preparedby the reaction of activated silica with a silane coupling reagent such as N-(2-aminoethyl)3-aminopropyltrimethoxysilane. The hybrid silica was further modified by organic compounds having abifunctional group. These modified hybrid silicas were used as catalysts for various nucleophilic reactions.And also, these were complexed with metallic ions for use as catalysts for oxygen oxidation of hydrocarbons.