Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system...Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.展开更多
A kind of novel multi-layer piezoelectric actuator is proposed and integrated with controllable constrained damping treatment to perform hybrid vibration control. The governing equation of the system is derived based ...A kind of novel multi-layer piezoelectric actuator is proposed and integrated with controllable constrained damping treatment to perform hybrid vibration control. The governing equation of the system is derived based on the constitutive equations of elastic, viscoelastic and piezoelectric materials, which shows that the magnitude of control force exerted by multi-layer piezoelectric actuator is the quadratic function of the number of piezoelectric laminates used but in direct proportion to control voltage. This means that the multi-layer actuator can produce greater actuating force than that by piezoelectric laminate actuator with the same area under the identical control voltage. The optimal location placement of the multi-layer piezoelectric actuator is also discussed. As an example, the hybrid vibration control of a cantilever rectangular thin-plate is numerically simulated and carried out experimentally. The simulated and experimental results validate the power of multi-layer piezoelectric actuator and indicate that the present hybrid damping technique can effectively suppress the low frequency modal vibration of the experimental thin-plate structure.展开更多
A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or...A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or two vibration states of the vehicle based on a quarter-car model or a half vehicle model via MR suspensions. They cannot provide a satisfying whole-vehicle performance on a road test. Hence, a full car vibration model via an MR suspension system is proposed. To reduce the heave, pitch and roll motion of the vehicle body and the vertical vibration of four wheels, a fuzzy hybrid controller for vibration attitude of full car via MR suspensions is proposed. First, a skyhook-fuzzy control scheme is designed to reduce the heave, roll and pitch motion of the vehicle body. Second, a revised ground hook control strategy is adopted to decrease the vertical vibration of the wheels. Finally, a hybrid control scheme based on a fuzzy reasoning method is proposed to tune the hybrid damping parameter, which is suitable for coordination the attitude of the vehicle body and the wheels. A test and control system for the vibration attitude of full car is set up. It is implemented on a car equipped with four MR suspensions. The results on random highway and rough road indicate that the fuzzy hybrid controller can decrease the vibration accelerations of the vehicle body and the wheels to 65%-80% and 80%-90%, respectively. It reduces the automotive vibrations of heave, roll and pitch more effectively than a passive suspension and an MR suspension with a traditional hybrid control scheme so that it achieves better ride comfort and road holding concurrently. This paper proposes a new fuzzy hybrid control(FHC) method for reducing vibration attitude of full car via MR suspensions and develops a road test to evaluate the FHC.展开更多
In this paper, a new hybrid control technique, based on a combination of base-isolation and semi-active variable stiffness/damping in a superstructure, is presented. To illustrate the efficiency of the proposed contro...In this paper, a new hybrid control technique, based on a combination of base-isolation and semi-active variable stiffness/damping in a superstructure, is presented. To illustrate the efficiency of the proposed control system, model tests on a mini-electromagnetic shaking table and a numerical simulation were performed. The test and numerical calculation results indicate that this new hybrid control mode with additional damping and smaller additional stiffness can achieve a better control efficiency.展开更多
A DC hybrid power source composed of photovoltaic cells as the main power source,Li-ion battery storage as the secondary power source,and power electronic interface,is modeled based on port-controlled Hamiltonian syst...A DC hybrid power source composed of photovoltaic cells as the main power source,Li-ion battery storage as the secondary power source,and power electronic interface,is modeled based on port-controlled Hamiltonian systems and Euler-Lagrange framework.Subsequently,passivity-based controllers are synthesized.Local asymptotic stability is ensured as well.In addition,a power management system is designed to manage power flow between components.Modeling and simulation of the proposed hybrid power source is accomplished using MATLAB/Simulink.Our interest is focused on the comparison of the two passivity-based control methods and their use in hybrid power systems.展开更多
Emerging sub-synchronous interactions(SSI)in wind-integrated power systems have added intense attention after numerous incidents in the US and China due to the involvement of series compensated transmission lines and ...Emerging sub-synchronous interactions(SSI)in wind-integrated power systems have added intense attention after numerous incidents in the US and China due to the involvement of series compensated transmission lines and power electronics devices.SSI phenomenon occurs when two power system elements exchange energy below the synchro-nous frequency.SSI phenomenon related to wind power plants is one of the most significant challenges to main-taining stability,while SSI phenomenon in practical wind farms,which has been observed recently,has not yet been described on the source of conventional SSI literature.This paper first explains the traditional development of SSI and its classification as given by the IEEE,and then it proposes a classification of SSI according to the current research status,reviews several mitigation techniques and challenges,and discusses analysis techniques for SSI.The paper also describes the effect of the active damping controllers,control scheme parameters,degree of series compensation,and various techniques used in wind power plants(WPPs).In particular,a supplementary damping controller with converter controllers in Doubly Fed Induction Generator based WPPs is briefly pronounced.This paper provides a real-istic viewpoint and a potential outlook for the readers to properly deal with SSI and its mitigation techniques,which can help power engineers for the planning,economical operation,and future expansion of sustainable development.展开更多
针对混合质量阻尼器(Hybrid Mass Damper,HMD)在结构减振控制中控制力输出和质量块冲程过大的问题,提出变阻尼混合质量阻尼器(Variable Damping Hybrid Mass Damper,VD-HMD)控制系统,在不降低控制效果的情况下减小控制力输出和降低质量...针对混合质量阻尼器(Hybrid Mass Damper,HMD)在结构减振控制中控制力输出和质量块冲程过大的问题,提出变阻尼混合质量阻尼器(Variable Damping Hybrid Mass Damper,VD-HMD)控制系统,在不降低控制效果的情况下减小控制力输出和降低质量块的冲程,并获得更好的控制效果。首先,建立VD-HMD控制系统的力学模型和运动方程;然后,利用一个设置有VD-HMD的单自由度模型作为研究对象,并将磁流变阻尼器作为变阻尼单元,进行数值分析;最后,论述VD-HMD控制系统的减振机理。仿真结果表明:VD-HMD系统有效解决控制装置的控制力输出和质量块的冲程过大的问题,并进一步提升控制效果,降低结构响应的效果更为优异。展开更多
文摘Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.
基金This project is supported by National Natural Science Foundation of China(No.50275114,No.10476020).
文摘A kind of novel multi-layer piezoelectric actuator is proposed and integrated with controllable constrained damping treatment to perform hybrid vibration control. The governing equation of the system is derived based on the constitutive equations of elastic, viscoelastic and piezoelectric materials, which shows that the magnitude of control force exerted by multi-layer piezoelectric actuator is the quadratic function of the number of piezoelectric laminates used but in direct proportion to control voltage. This means that the multi-layer actuator can produce greater actuating force than that by piezoelectric laminate actuator with the same area under the identical control voltage. The optimal location placement of the multi-layer piezoelectric actuator is also discussed. As an example, the hybrid vibration control of a cantilever rectangular thin-plate is numerically simulated and carried out experimentally. The simulated and experimental results validate the power of multi-layer piezoelectric actuator and indicate that the present hybrid damping technique can effectively suppress the low frequency modal vibration of the experimental thin-plate structure.
基金supported by National Natural Science Foundation of China (Grant No. 60674097, Grant No. 60804018)Visiting Scholar Foundation of Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education in Chongqing University of China, and Chongqing Municipal Natural Science Foundation of China (Grant No. 2008BB2407, Grant No. 2009AC3079, Grant No. 2009BB3416)
文摘A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or two vibration states of the vehicle based on a quarter-car model or a half vehicle model via MR suspensions. They cannot provide a satisfying whole-vehicle performance on a road test. Hence, a full car vibration model via an MR suspension system is proposed. To reduce the heave, pitch and roll motion of the vehicle body and the vertical vibration of four wheels, a fuzzy hybrid controller for vibration attitude of full car via MR suspensions is proposed. First, a skyhook-fuzzy control scheme is designed to reduce the heave, roll and pitch motion of the vehicle body. Second, a revised ground hook control strategy is adopted to decrease the vertical vibration of the wheels. Finally, a hybrid control scheme based on a fuzzy reasoning method is proposed to tune the hybrid damping parameter, which is suitable for coordination the attitude of the vehicle body and the wheels. A test and control system for the vibration attitude of full car is set up. It is implemented on a car equipped with four MR suspensions. The results on random highway and rough road indicate that the fuzzy hybrid controller can decrease the vibration accelerations of the vehicle body and the wheels to 65%-80% and 80%-90%, respectively. It reduces the automotive vibrations of heave, roll and pitch more effectively than a passive suspension and an MR suspension with a traditional hybrid control scheme so that it achieves better ride comfort and road holding concurrently. This paper proposes a new fuzzy hybrid control(FHC) method for reducing vibration attitude of full car via MR suspensions and develops a road test to evaluate the FHC.
基金Societal Commonweal Fund Project (2001DIB20098) Earthquake Science Associate Fund (603011)
文摘In this paper, a new hybrid control technique, based on a combination of base-isolation and semi-active variable stiffness/damping in a superstructure, is presented. To illustrate the efficiency of the proposed control system, model tests on a mini-electromagnetic shaking table and a numerical simulation were performed. The test and numerical calculation results indicate that this new hybrid control mode with additional damping and smaller additional stiffness can achieve a better control efficiency.
基金supported by Iran University of Science and Technology,Iran
文摘A DC hybrid power source composed of photovoltaic cells as the main power source,Li-ion battery storage as the secondary power source,and power electronic interface,is modeled based on port-controlled Hamiltonian systems and Euler-Lagrange framework.Subsequently,passivity-based controllers are synthesized.Local asymptotic stability is ensured as well.In addition,a power management system is designed to manage power flow between components.Modeling and simulation of the proposed hybrid power source is accomplished using MATLAB/Simulink.Our interest is focused on the comparison of the two passivity-based control methods and their use in hybrid power systems.
基金supported financially by the Ministerio de Ciencia e Innovación(Spain)and the European Regional Development Fund,under Research Grant WindSound project(Ref.:PID2021-125278OB-I00).
文摘Emerging sub-synchronous interactions(SSI)in wind-integrated power systems have added intense attention after numerous incidents in the US and China due to the involvement of series compensated transmission lines and power electronics devices.SSI phenomenon occurs when two power system elements exchange energy below the synchro-nous frequency.SSI phenomenon related to wind power plants is one of the most significant challenges to main-taining stability,while SSI phenomenon in practical wind farms,which has been observed recently,has not yet been described on the source of conventional SSI literature.This paper first explains the traditional development of SSI and its classification as given by the IEEE,and then it proposes a classification of SSI according to the current research status,reviews several mitigation techniques and challenges,and discusses analysis techniques for SSI.The paper also describes the effect of the active damping controllers,control scheme parameters,degree of series compensation,and various techniques used in wind power plants(WPPs).In particular,a supplementary damping controller with converter controllers in Doubly Fed Induction Generator based WPPs is briefly pronounced.This paper provides a real-istic viewpoint and a potential outlook for the readers to properly deal with SSI and its mitigation techniques,which can help power engineers for the planning,economical operation,and future expansion of sustainable development.
文摘针对混合质量阻尼器(Hybrid Mass Damper,HMD)在结构减振控制中控制力输出和质量块冲程过大的问题,提出变阻尼混合质量阻尼器(Variable Damping Hybrid Mass Damper,VD-HMD)控制系统,在不降低控制效果的情况下减小控制力输出和降低质量块的冲程,并获得更好的控制效果。首先,建立VD-HMD控制系统的力学模型和运动方程;然后,利用一个设置有VD-HMD的单自由度模型作为研究对象,并将磁流变阻尼器作为变阻尼单元,进行数值分析;最后,论述VD-HMD控制系统的减振机理。仿真结果表明:VD-HMD系统有效解决控制装置的控制力输出和质量块的冲程过大的问题,并进一步提升控制效果,降低结构响应的效果更为优异。