期刊文献+
共找到285篇文章
< 1 2 15 >
每页显示 20 50 100
Ag-integrated mixed metallic Co-Fe-Ni-Mn hydroxide composite as advanced electrode for high-performance hybrid supercapacitors
1
作者 Anki Reddy Mule Bhimanaboina Ramulu +2 位作者 Shaik Junied Arbaz Anand Kurakula Jae Su Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期579-591,I0013,共14页
Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices.In this regard,s... Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices.In this regard,silver(Ag)has attracted great attention in the design of efficient electrodes.Inspired by the house/building process,which means electing the right land,it lays a strong foundation and building essential columns for a complex structure.Herein,we report the construction of multifaceted heterostructure cobalt-iron hydroxide(CFOH)nanowires(NWs)@nickel cobalt manganese hydroxides and/or hydrate(NCMOH)nanosheets(NSs)on the Ag-deposited nickel foam and carbon cloth(i.e.,Ag/NF and Ag/CC)substrates.Moreover,the formation and charge storage mechanism of Ag are described,and these contribute to good conductive and redox chemistry features.The switching architectural integrity of metal and redox materials on metallic frames may significantly boost charge storage and rate performance with noticeable drop in resistance.The as-fabricated Ag@CFOH@NCMOH/NF electrode delivered superior areal capacity value of 2081.9μA h cm^(-2)at 5 mA cm^(-2).Moreover,as-assembled hybrid cell based on NF(HC/NF)device exhibited remarkable areal capacity value of 1.82 mA h cm^(-2)at 5 mA cm^(-2)with excellent rate capability of 74.77%even at 70 mA cm^(-2)Furthermore,HC/NF device achieved maximum energy and power densities of 1.39 mW h cm^(-2)and 42.35 mW cm^(-2),respectively.To verify practical applicability,both devices were also tested to serve as a self-charging station for various portable electronic devices. 展开更多
关键词 Current collectors Redox-active silver Transition metal-hydroxides Electrochemical performance hybrid supercapacitor
下载PDF
Anion storing,oxygen vacancy incorporated perovskite oxide composites for high-performance aqueous dual ion hybrid supercapacitors
2
作者 Taehun Kang Puritut Nakhanivej +3 位作者 Kyung Jae Wang Yu Chen Yongchul G Chung Ho Seok Park 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期646-655,共10页
Dual ion storage hybrid supercapacitors(HsCs)are considered as a promising device to overcome the limited energy density of existing supercapacitors while preserving high power and long cyclability.However,the develop... Dual ion storage hybrid supercapacitors(HsCs)are considered as a promising device to overcome the limited energy density of existing supercapacitors while preserving high power and long cyclability.However,the development of high-capacity anion-storing materials,which can be paired with fast charg-ing capacitive electrodes,lags behind cation-storing counterparts.Herein,we demonstrate the surface faradaic OH-storage mechanism of anion storing perovskite oxide composites and their application in high-performance dual ion HsCs.The oxygen vacancy and nanoparticle size of the reduced LaMnO_(3)(r-LaMnO_(3))were controlled,while r-LaMnO_(3) was chemically coupled with ozonated carbon nanotubes(oCNTs)for the improved anion storing capacity and cycle performance.As taken by in-situ and ex-situ spectroscopic and computational analyses,OH-ions are inserted into the oxygen vacancies coordi-nating with octahedral Mn with the increase in the oxidation state of Mn during the charging process or vice versa.Configuring OH-storing r-LaMnO_(3)/oCNT composite with Na*storing MXene,the as-fabricated aqueous dual ion HSCs achieved the cycle performance of 73.3%over 10,000 cycles,delivering the max-imum energy and power densities of 47.5 w h kg^(-1) and 8 kw kg^(-1),respectively,far exceeding those of previously reported aqueous anion and dual ion storage cells.This research establishes a foundation for the unique anion storage mechanism of the defect engineered perovskite oxides and the advancement of dual ion hybrid energy storage devices with high energy and power densities. 展开更多
关键词 Anion storage Dual ion storage Defect engineered perovskites hybrid supercapacitors NANOCOMPOSITES
下载PDF
An aqueous magnesium-ion hybrid supercapacitor operated at-50℃
3
作者 Guoshen Yang Gangrui Qu +7 位作者 Chi Fang Jie Deng Xianqi Xu Yinghao Xie Tian Sun Yachao Zhu Jiaxin Zheng Hang Zhou 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期702-712,共11页
The recent advances in aqueous magnesium-ion hybrid supercapacitor(MHSC)have attracted great attention as it brings together the benefits of high energy density,high power density,and synchronously addresses cost and ... The recent advances in aqueous magnesium-ion hybrid supercapacitor(MHSC)have attracted great attention as it brings together the benefits of high energy density,high power density,and synchronously addresses cost and safety issues.However,the freeze of aqueous electrolytes discourages aqueous MHSC from operating at low-temperature conditions.Here,a low-concentration aqueous solution of 4 mol L^(-1) Mg(ClO_(4))_(2) is devised for its low freezing point(-67℃)and ultra-high ionic conductivity(3.37 mS cm^(-1) at-50℃).Both physical characterizations and computational simulations revealed that the Mg(ClO_(4))_(2) can effectively disrupt the original hydrogen bond network among water molecules via transmuting the electrolyte structure,thus yielding a low freezing point.Thus,the Mg(ClO_(4))_(2) electrolytes endue aqueous MHSC with a wider temperature operation range(-50℃–25℃)and a higher energy density of 103.9 Wh kg^(-1) at 3.68 kW kg^(-1) over commonly used magnesium salts(i.e.,MgSO_(4) and Mg(NO_(3))_(2))electrolytes.Furthermore,a quasi-solid-state MHSC based on polyacrylamide-based hydrogel electrolyte holds superior low-temperature performance,excellentflexibility,and high safety.This work pioneers a convenient,cheap,and eco-friendly tactic to procure low-temperature aqueous magnesium-ion energy storage device. 展开更多
关键词 Low-concentration aqueous electrolyte Anti-freezing property Magnesium-ion hybrid supercapacitor High energy density
下载PDF
All-Climate Stretchable Dendrite-Free Zn-Ion Hybrid Supercapacitors Enabled by Hydrogel Electrolyte Engineering 被引量:4
4
作者 Yuqi Jiang Kun Ma +2 位作者 Meiling Sun Yuanyuan Li Jinping Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期381-388,共8页
Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics.In particular,aqueous zinc-ion hybrid supercapacitors... Hybrid supercapacitors have shown great potentials to fulfill the demand of future diverse applications such as electric vehicles and portable/wearable electronics.In particular,aqueous zinc-ion hybrid supercapacitors(ZHSCs)have gained much attention due to their low-cost,high energy density,and environmental friendliness.Nevertheless,typical ZHSCs use Zn metal anode and normal liquid electrolyte,causing the dendrite issue,restricted working temperature,and inferior device flexibility.Herein,a novel flexible Zn-ion hybrid supercapacitor(FZHSC)is developed by using activated carbon(AC)anode,δ-MnO_(2) cathode,and innovative PVA-based gel electrolyte.In this design,heavy Zn anode and its dendrite issue are avoided and layered cathode with large interlayer spacing is employed.In addition,flexible electrodes are prepared and integrated with an anti-freezing,stretchable,and compressible hydrogel electrolyte,which is attained by simultaneously using glycerol additive and freezing/thawing technique to regulate the hydrogen bond and microstructure.The resulting FZHSC exhibits good rate capability,high energy density(47.86 Wh kg^(−1);3.94 mWh cm^(−3)),high power density(5.81 kW kg^(−1);480 mW cm^(−3)),and excellent cycling stability(~91%capacity retention after 30000 cycles).Furthermore,our FZHSC demonstrates outstanding flexibility with capacitance almost unchanged even after various continuous shape deformations.The hydrogel electrolyte still maintains high ionic conductivity at ultralow temperatures(≤−30℃),enabling the FZHSC cycled well,and powering electronic timer robustly within an all-climate temperature range of−30~80℃.This work highlights that the promising Zn metal-free aqueous ZHSCs can be designed with great multifunctionality for more practical application scenarios. 展开更多
关键词 all-climate operation dendrite-free anode high flexibility multifunctional gel electrolyte Zn-ion hybrid supercapacitor
下载PDF
Recent progress in flexible Zn-ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications 被引量:1
5
作者 Muhammad Sufyan Javed Sumreen Asim +5 位作者 Tayyaba Najam Muhammad Khalid Iftikhar Hussain Awais Ahmad Mohammed A.Assiri Weihua Han 《Carbon Energy》 SCIE CAS CSCD 2023年第1期82-122,共41页
One of the most exciting new developments in energy storage technology is flexible Zn-ion hybrid supercapacitors(f-ZIHSCs),which combine the high energy of Zn-ion batteries with high-power supercapacitors to satisfy t... One of the most exciting new developments in energy storage technology is flexible Zn-ion hybrid supercapacitors(f-ZIHSCs),which combine the high energy of Zn-ion batteries with high-power supercapacitors to satisfy the needs of portable flexible electronics.However,the development of f-ZHSCs is still in its infancy,and there are numerous barriers to overcome before they can be widely implemented for practical applications.This review gives an up-to-date description of recent achievements and underlying concepts in energy storage mechanisms of f-ZIHSCs and emphasizes the critical role of cathode,anode,and electrolyte materials systems in speeding the prosperity of f-ZIHSCs.The innovative nanostructured-based cathode materials for f-ZIHSCs include carbon(e.g.,porous carbon,heteroatom-doped carbon,biomass-derived porous carbon,graphene,etc.),metal-oxides,MXenes,and metal/covalentorganic frameworks,and other materials(e.g.,activated carbon,phosphorene,etc.)are mainly focused.Afterward,the latest developments in flexible anode and electrolyte frameworks and impacts of electrolyte compositions on the electrochemical properties of f-ZIHSC are elaborated.Subsequently,the advancements based on fabrication designs,including quasi-solid-state,micro,fiber-shaped,and all climate-changed f-ZIHSCs,are discussed in detail.Lastly,a summary of current challenges and recommendations for the future progress of advanced f-ZIHSC are addressed.This review article is anticipated to further understand the viable strategies and achievable approaches for assembling high-performance f-ZIHSCs and boost the technical revolutions on cathode,anode,and electrolytes for f-ZIHSC devices. 展开更多
关键词 electrode electrolyte FLEXIBLE MOFs MXenes Zn-ion hybrid supercapacitor
下载PDF
Improving the charge kinetics through in-situ growth of NiSe nanoparticles on g-C_(3)N_(4)nanosheets for efficient hybrid supercapacitors 被引量:1
6
作者 Somnath R.Khaladkar Oshnik Maurya +4 位作者 Girish Gund Bhavesh Sinha Deepak Dubal R.R.Deshmukh Archana Kalekar 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期304-313,I0008,共11页
Nickel selenide(NiSe)has been a promising positive electrode for hybrid supercapacitors due to its multiple oxidation states,tunability,and high specific capacity.However,sluggish ion transfers and particle agglomerat... Nickel selenide(NiSe)has been a promising positive electrode for hybrid supercapacitors due to its multiple oxidation states,tunability,and high specific capacity.However,sluggish ion transfers and particle agglomeration hamper its electrochemical performance.In the present study,we have grown NiSe nanoparticles on two-dimensional(2D)graphitic carbon nitride(g-C_(3)N_(4))nanosheets to realize three-dimensional(3D)architecture.The 2D support,high nitrogen content,and features of g-C_(3)N_(4)enhanced the specific capacity of the NiSe/g-C_(3)N_(4)nanocomposite material.The resulting nanocomposite shows a specific capacity of 320 mA h g^(-1)at a current density of 1 A g^(-1),which is considerably higher than pristine NiSe.Later,the hybrid supercapacitor(HSC)device was fabricated using NiSe/g-C_(3)N_(4)composite as positive and activated carbon(AC)as negative electrodes.The cell delivered an energy density of 52.5 Wh kg^(-1)at a power density of 1488 W kg^(-1)with excellent cyclic stability of 84.9%over 8000 cycles.The electrochemical performance enhancement corresponds to a 3D structure,high electrochemical active sites,and improved charge transportation at the electrode/electrolyte interface.Thus,the present work offers an easy approach and architectural design for high-performance HSC. 展开更多
关键词 Nickel selenide Graphitic carbon nitride NANOCOMPOSITE Specific capacity hybrid supercapacitor
下载PDF
Lithiation-induced controllable vacancy engineering for developing highly active Ni_(3)Se_(2) as a high-rate and large-capacity battery-type cathode in hybrid supercapacitors
7
作者 Yinna He Ting Liu +8 位作者 Jiangnan Song Yiwei Wang Yuxiao Zhang Jie Feng Alan Meng Guicun Li Lei Wang Jian Zhao Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期37-46,I0002,共11页
The poor rate capability and low capacity are huge barriers to realize the commercial applications of battery-type transition metal compounds(TMCs) cathode.Herein,numerous Se vacancy defects are introduced into the Ni... The poor rate capability and low capacity are huge barriers to realize the commercial applications of battery-type transition metal compounds(TMCs) cathode.Herein,numerous Se vacancy defects are introduced into the Ni_(3)Se_(2)lamellas by pre-lithiation technique,which can be acted as a novel class of battery-type cathode for hybrid supercapacitors.Appropriately modulating the contents of the preembedded lithium(Li) ions can induce a controllable vacancy content in the series of as-prepared products,effectively endowing a fast reaction kinetic and high activity for the cathode.Benefiting from the distinct design,the optimized cathode(Li2-Ni_(3)Se_(2)) presents a high specific capacity of 236 mA h g^(-1)at1 A g^(-1),importantly,it can still possess 117 mA h g^(-1)when the current density is increased up to 100A g^(-1),exhibiting relatively high rate capability.It is much superior to other battery-type TMC cathodes reported in previous studies.Moreover,the cathode also shows the excellent cycling stability with 92%capacity retention after 3,000 cycles.In addition,a hybrid supercapacitor(HSC) is assembled with the obtained Li2-Ni_(3)Se_(2)as the cathode and active carbon(AC) as the anode,which delivers a high energy density of 77 W h kg^(-1)at 4 kW kg^(-1)and long-term durability(90% capacitance retention after 10,000 cycles).Therefore,the strategy not only provides an effective way to realize the controllable vacancy content in TMCs for achieving high-perfo rmance cathodes for HSC,but also further promotes their large-scale applications in the energy storage fields. 展开更多
关键词 Pre-lithiation Selenium vacancies High-rate Battery-type cathode hybrid supercapacitor
下载PDF
Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry 被引量:8
8
作者 Yang Li Wang Yang +6 位作者 Wu Yang Ziqi Wang Jianhua Rong Guoxiu Wang Chengjun Xu Feiyu Kang Liubing Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期268-283,共16页
Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and ant... Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and anti-self-discharge ZHSs are realized based on the fibrous carbon cathodes with hierarchically porous surface and O/N heteroatom functional groups.Hierarchically porous surface of the fabricated free-standing fibrous carbon cathodes not only provides abundant active sites for divalent ion storage,but also optimizes ion transport kinetics.Consequently,the cathodes show a high gravimetric capacity of 156 mAh g^(−1),superior rate capability(79 mAh g^(−1)with a very short charge/discharge time of 14 s)and exceptional cycling stability.Meanwhile,hierarchical pore structure and suitable surface functional groups of the cathodes endow ZHSs with a high energy density of 127 Wh kg−1,a high power density of 15.3 kW kg^(−1)and good anti-self-discharge performance.Mechanism investigation reveals that ZHS electrochemistry involves cation adsorption/desorption and Zn_(4)SO_(4)(OH)_(6)·5H_(2)O formation/dissolution at low voltage and anion adsorption/desorption at high voltage on carbon cathodes.The roles of these reactions in energy storage of ZHSs are elucidated.This work not only paves a way for high-performance cathode materials of ZHSs,but also provides a deeper understanding of ZHS electrochemistry. 展开更多
关键词 Zn-ion hybrid supercapacitor Carbon material Fibrous cathode Hierarchical pore structure HIGH-ENERGY
下载PDF
A Better Zn-Ion Storage Device:Recent Progress for Zn-Ion Hybrid Supercapacitors 被引量:5
9
作者 Jialun Jin Xiangshun Geng +1 位作者 Qiang Chen Tian-Ling Ren 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期158-206,共49页
As a new generation of Zn-ion storage systems,Zn-ion hybrid supercapacitors(ZHSCs)garner tremendous interests recently from researchers due to the perfect integration of batteries and supercapacitors.ZHSCs have excell... As a new generation of Zn-ion storage systems,Zn-ion hybrid supercapacitors(ZHSCs)garner tremendous interests recently from researchers due to the perfect integration of batteries and supercapacitors.ZHSCs have excellent integration of high energy density and power density,which seamlessly bridges the gap between batteries and supercapacitors,becoming one of the most viable future options for large-scale equipment and portable electronic devices.However,the currently reported two configurations of ZHSCs and corresponding energy storage mechanisms still lack systematic analyses.Herein,this review will be prudently organized from the perspectives of design strategies,electrode configurations,energy storage mechanisms,recent advances in electrode materials,electrolyte behaviors and further applications(micro or flexible devices)of ZHSCs.The synthesis processes and electrochemical properties of well-designed Zn anodes,capacitor-type electrodes and novel Zn-ion battery-type cathodes are comprehensively discussed.Finally,a brief summary and outlook for the further development of ZHSCs are presented as well.This review will provide timely access for researchers to the recent works regarding ZHSCs. 展开更多
关键词 Zn-ion storage systems Zn-ion hybrid supercapacitors Carbon electrodes Zinc anodes Electrolytes
下载PDF
Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors 被引量:18
10
作者 Qiyu Liu Haozhe Zhang +2 位作者 Jinhao Xie Xiaoqing Liu Xihong Lu 《Carbon Energy》 CAS 2020年第4期521-539,共19页
Zinc-ion hybrid supercapacitors(ZHSCs)have garnered increasing attention as promising energy storage devices in recent years,as they combine the advantages of high-energy Zn-ion batteries and high-power supercapacitor... Zinc-ion hybrid supercapacitors(ZHSCs)have garnered increasing attention as promising energy storage devices in recent years,as they combine the advantages of high-energy Zn-ion batteries and high-power supercapacitors.However,the development of ZHSCs is still in its infancy and there are many bottlenecks to overcome.In particular,the challenge induced by the limited ion adsorption capability of carbon-positive electrodes severely restricts the energy density of ZHSCs.Therefore,it has become a key issue to design novel carbon-positive electrodes that enable high energy density yet do not deteriorate the intrinsic power capability and long-term durability.This study focuses on recent achievements in synthesis,morphology,and electrochemical performance of various carbon materials applied in ZHSCs.The modification strategies to optimize their electrochemical performance are briefly summarized.In addition,current challenges and future opportunities in this field are also outlined.This review will be beneficial to provide an organized framework for the research systems of carbon-positive electrodes and develop novel ZHSCs with high energy density. 展开更多
关键词 CARBON energy density GRAPHENE zinc-ion hybrid supercapacitors
下载PDF
Hybrid supercapacitor based on polyaniline doped with lithium salt and activated carbon electrodes 被引量:2
11
作者 方静 崔沐 +3 位作者 卢海 张治安 赖延清 李劼 《Journal of Central South University》 SCIE EI CAS 2009年第3期434-439,共6页
Polyaniline(PANI) nanofiber was synthesized by interfacial polymerization utilizing the interface between HC1 and CCl4. The hybrid type supercapacitors (PLi/C) based on Li-doping polyaniline and activated carbon e... Polyaniline(PANI) nanofiber was synthesized by interfacial polymerization utilizing the interface between HC1 and CCl4. The hybrid type supercapacitors (PLi/C) based on Li-doping polyaniline and activated carbon electrode were fabricated and compared with the redox type capacitors (PLi/PLi) based on two uniformly Li-doping polyaniline electrodes. The electrochemical performances of the two types of supercapacitors were characterized in non-aqueous electrolyte. PLi/C supercapacitors have a wider effective energy storage potential range and a higher upper potential. At the same time, the PLi/C supercapacitor exhibits a specific capacity of 120.93 F/g at initial discharge and retains 80% after 500 cycles. The ohmic internal resistance (REs) of PLi/C supercapacitor is 5.0 Ω, which is smaller than that of PLi/PLi capacitor (5.5 Ω). Moreover, it can be seen that EtgNBF4 organic solution is more suitable for using as organic electrolyte of PLi/C capacitor compared with organic solution containing LiPFr. 展开更多
关键词 POLYANILINE Li salt hybrid supercapacitor conducting polymer DOPING
下载PDF
Zinc-ion hybrid supercapacitors with ultrahigh areal and gravimetric energy densities and long cycling life 被引量:1
12
作者 Ahmad Amiri M.Naraghi Andreas A.Polycarpou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期480-491,I0012,共13页
Zinc ion hybrid supercapacitor (ZIHSC) with promising energy and power densities is an excellent answer to the ever-growing demand for energy storage devices.The restricted lifespan due to the dendrite formation on me... Zinc ion hybrid supercapacitor (ZIHSC) with promising energy and power densities is an excellent answer to the ever-growing demand for energy storage devices.The restricted lifespan due to the dendrite formation on metallic zinc (Zn) is one of the main roadblocks.Herein,we investigate the electrochemical capability of oxygen-enriched porous carbon nanofibers (A-CNF) and nitrogen,oxygen-enriched porous carbon nanofibers (N-CNF) cathode materials for structural ZIHSCs.To this end,a series of samples with different chemical compositions (N and O contents) are prepared to present deep insight into the electrochemical mechanism between N/O doping and Zn-ion storage.The as-prepared ZIHSC in the presence of N-CNF cathode and Zn Cl_(2) electrolyte offers a battery-level gravimetric energy density of 143.2 Wh kg^(-1)at a power density of 367.1 W kg^(-1).The free-standing N-CNF electrodes in ZIHSCs enjoy delivering an outstanding areal energy density of 110.4μWh cm^(-2)at 0.24 m W cm^(-2),excellent rate capability,and noticeable cycling stability over 10,000 cycles at 10 A g^(-1)with less than 7%decay.It was also concluded that active pyrrolic N dopants might deliver and facilitate more pseudocapacitance in ZIHSCs than other N configurations,resulting in higher adsorption/desorption and insertion/extraction process of Zn Cl^(+).Taking advantage of the beneficial properties of a free-standing continuous cathode,this novel generation of structural cathode material offers high areal and gravimetric energy densities and mechanical properties in a single zinc-ion-based package. 展开更多
关键词 Porous carbon nanofibers Zinc chloride electrolyte Zinc ion hybrid supercapacitors NITROGEN-DOPING ACTIVATION Energy density
下载PDF
Recent progress in water splitting and hybrid supercapacitors based on nickel-vanadium layered double hydroxides 被引量:1
13
作者 JosuéM.Gonçalves Paulo R.Martins +1 位作者 Koiti Araki Lucio Angnes 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期496-515,I0012,共21页
Environmentally friendly energy sources alternatives to fossil fuels such as solar and wind are strategic for meeting the needs of an increasingly energy demanding society,despite their periodic/intermittent nature.Th... Environmentally friendly energy sources alternatives to fossil fuels such as solar and wind are strategic for meeting the needs of an increasingly energy demanding society,despite their periodic/intermittent nature.Thus,urge the development of clean and renewable energy sources such as based on solar energy and water in a cyclic way,by photoinduced water-splitting and regeneration in fuel cells.In this context,energy storage devices such as hybrid supercapacitors become fundamental for realization of a sustainable society.In this review,the early discovery and recent advances concerning synthetic strategies,hierarchical structures,and oxygen evolution reaction(OER)/hydrogen evolution reactions(HER) catalytic performances of nickel-vanadium double hydroxides(NiV-LDHs) based nanomaterials are summarized.A discussion about the role of vanadium ions in HER/OER was also included,highlighting the recent progress in theoretical calculations in this field.Finally,some hybrid supercapacitor electrode materials based on NiV-LDHs are described,including the strategies to circumvent the parasitic oxygen evolution reaction during charge-discharge of those energy storage devices.In short,catalysts for HER/OER and hybrid supercapacitor electrode materials based on NiV-LDHs were reviewed considering their key multifunctional role in the way to a more sustainable society. 展开更多
关键词 Nickel-vanadium double hydroxides hybrid supercapacitors Water splitting Oxygen evolution reaction Hydrogen evolution reaction Charge storage OER parasitism
下载PDF
The roles of graphene in advanced Li-ion hybrid supercapacitors 被引量:2
14
作者 Junwei Lang Xu Zhang +3 位作者 Bao Liu RutaoWang Jiangtao Chen Xingbin Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期43-56,共14页
Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, are electrochemical energy stor- age devices that combining the advantages of high power density of supercapacitor and high energy density o... Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, are electrochemical energy stor- age devices that combining the advantages of high power density of supercapacitor and high energy density of Li-ion battery. However, high power density and long cycle life are still challenges for the cul~ rent LIHSs due to the imbalance of charge-storage capacity and electrode kinetics between capacitor-type cathode and battery-type anode. Therefore, great efforts have been made on designing novel cathode materials with high storage capacity and anode material with enhanced kinetic behavior for LIHSs. With unique two-dimensional form and numerous appealing properties, for the past several years, the rational designed graphene and its composites materials exhibit greatly improved electrochemical performance as cathode or anode for LIHSs. Here, we summarized and discussed the latest advances of the state- of-art graphene-based materials for LIHSs applications. The major roles of graphene are highlighted as (1) a superior active material, (2) ultrathin 2D flexible support to remedy the sluggish reaction of the metal compound anode, and (3) good 2D building blocks for constructing macroscopic 3D pOFOUS car- bonjgraphene hybrids. In addition, some high performance aqueous LIHSs using graphene as electrode were also summarized. Finally, the perspectives and challenges are also proposed for further develop- ment of more advanced graphene-based LIHSs. 展开更多
关键词 Graphene Li-ion hybrid supercapacitors supercapacitor Lithium ion batteries Carbon materials Metal oxide Naoocomposites
下载PDF
Wire-Shaped 3D-Hybrid Supercapacitors as Substitutes for Batteries
15
作者 Kyeong‑Nam Kang Ananthakumar Ramadoss +4 位作者 Jin‑Wook Min Jong‑Chul Yoon Deokjung Lee Seok Ju Kang Ji‑Hyun Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期211-223,共13页
We report a wire-shaped three-dimensional(3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of elec... We report a wire-shaped three-dimensional(3D)-hybrid supercapacitor with high volumetric capacitance and high energy density due to an interconnected 3D-configuration of the electrode allowing for large number of electrochemical active sites,easy access of electrolyte ions,and facile charge transport for flexible wearable applications.The interconnected and compact electrode delivers a high volumetric capacitance(gravimetric capacitance)of 73 F cm−3(2446 F g−1),excellent rate capability,and cycle stability.The 3D-nickel cobalt-layered double hydroxide onto 3D-nickel wire(NiCo LDH/3D-Ni)//the 3D-manganese oxide onto 3D-nickel wire(Mn3O4/3D-Ni)hybrid supercapacitor exhibits energy density of 153.3 Wh kg−1 and power density of 8810 W kg−1.The red lightemitting diode powered by the as-prepared hybrid supercapacitor can operate for 80 min after being charged for tens of seconds and exhibit excellent electrochemical stability under various deformation conditions.The results verify that such wire-shaped 3D-hybrid supercapacitors are promising alternatives for batteries with long charge–discharge times,for smart wearable and implantable devices. 展开更多
关键词 Three-dimensional(3D)metal current collector Flexible hybrid supercapacitor Wire-shaped supercapacitor High energy density device Fast charging energy storage system
下载PDF
Dual-ion hybrid supercapacitor:Integration of Li-ion hybrid supercapacitor and dual-ion battery realized by porous graphitic carbon 被引量:1
16
作者 Changzhen Zhan Xiaojie Zeng +4 位作者 Xiaolong Ren Yang Shen Ruitao Lv Feiyu Kang Zheng-Hong Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期180-184,共5页
Lithium-ion hybrid supercapacitors(Li-HSCs) and dual-ion batteries(DIBs) are two types of energy storage devices that have attracted extensive research interest in recent years. Li-HSCs and DIBs have similarities in d... Lithium-ion hybrid supercapacitors(Li-HSCs) and dual-ion batteries(DIBs) are two types of energy storage devices that have attracted extensive research interest in recent years. Li-HSCs and DIBs have similarities in device structure, tendency for ion migration, and energy storage mechanisms at the negative electrode. However, these devices have differences in energy storage mechanisms and working potentials at the positive electrode. Here, we first realize the integration of a Li-HSC and a DIB to form a dual-ion hybrid supercapacitor(DIHSC), by employing mesocarbon microbead(MCMB)-based porous graphitic carbon(PGC) with a partially graphitized structure and porous structure as a positive electrode material. The MCMB-PGC-based DIHSC exhibits a novel dual-ion battery-capacitor hybrid mechanism: it exhibits excellent electronic double-layer capacitor(EDLC) behavior like a Li-HSC in the low-middle wide potential range and anion intercalation/de-intercalation behavior like a DIB in the high-potential range. Two types of mechanisms are observed in the electrochemical characterization process, and the energy density of the new DIHSC is significantly increased. 展开更多
关键词 Dual-ion hybrid supercapacitor hybrid supercapacitor Lithium-ion BATTERY Dual-ion BATTERY Porous graphitic carbon hybrid mechanism
下载PDF
Exploring the potential of constructing a hybrid supercapacitor with FeCoNi-LDH porous material containing oxygen vacancies for high-performance energy storage applications
17
作者 Jihao Su Ling Yang +1 位作者 Dengbin Yu Shaojun Dong 《Nano Research》 SCIE EI CSCD 2024年第9期8134-8144,共11页
A significant challenge in developing high-performance hybrid supercapacitors(HSCs)is the need to reasonably construct advanced architectures that consist of various components and exhibit superior electrochemical cap... A significant challenge in developing high-performance hybrid supercapacitors(HSCs)is the need to reasonably construct advanced architectures that consist of various components and exhibit superior electrochemical capacitance performance.The FeCoNi-layered double hydroxide(FeCoNi-LDH)porous material has a specific capacitance of 1960 F·g^(-1)when used as the anode material at 1 A·g^(-1).The FeCoNi-LDH material exhibits nanoplates with a distinct spindle morphology on their surface.Due to the combined action of the three metals and abundant oxygen vacancies,they exhibit unique rate performance and cycle stability.The electronic structure of LDH and the regulation of oxygen vacancy were confirmed by density functional theory(DFT)calculations.This suggests that the strength of hydroxide can reduce the energy required for oxygen vacancy formation in FeCoNi-LDH nanosheets and enhance ion and charge transfer,as well as electrolyte adsorption on the electrode surface.The FeCoNi-LDH//activated carbon(AC)HSC has an energy density of 53.2 Wh·kg^(-1)at a power density of 800 W·kg^(-1),surpassing other devices composed of comparable materials during the same timeframe.This study made significant advances in the design and synthesis of a ternary LDH porous structure with distinct oxygen vacancies,as well as its potential application in electrochemical energy storage. 展开更多
关键词 oxygen vacancy FeCoNi-layered double hydroxide(FeCoNi-LDH) theory calculation electrode material hybrid supercapacitor
原文传递
PVP/PAN-derived porous carbon fiber for zinc-ion hybrid supercapacitors
18
作者 Shu-Hua Yang Wen-Qing Fu +1 位作者 Yan-Wei Cui Bing-Qiang Cao 《Rare Metals》 SCIE EI CAS CSCD 2024年第7期3066-3073,共8页
Porous carbon fibers are promising cathodes for zinc-ion hybrid supercapacitors(ZHSs)owing to their abundant active sites,great conductivity,and stable physical and chemical properties.However,designing a proper prepa... Porous carbon fibers are promising cathodes for zinc-ion hybrid supercapacitors(ZHSs)owing to their abundant active sites,great conductivity,and stable physical and chemical properties.However,designing a proper preparation technique to regulate the microstructure of carbon fibers still remains a great challenge.Here,a poly vinylpyrrolidone/po-lyacry lonitrile(PVP/PAN)-derived porous carbon fiber is developed via the PVP/PAN blend electrospinning and hydrothermal selective PVP removal strategy.The hydrothermal selective PVP removal strategy can effectively avoid a cross-linking between PVP and PAN during the traditional stabilization at air atmosphere.In PVP/PAN-derived porous carbon fiber,the sufficient micropores provide abundant space for the Zn^(2+)storage,whereas the proper mesopores contribute to the fast ion transfer.These hierarchical porous structures endow ZHSs with high specific capacity and high-rate performance.The ZHS assembled with the optimal PVP/PAN-derived porous carbon fiber(PVP-PANC-0.8)displays an outstanding specific capacity of 208 mAh·g^(-1),high rate capability(49.5%)from 0.5 to 5 A·g^(-1),and 72.25%capacity retention after 10,000 cycles at 0.5 A·g^(-1). 展开更多
关键词 Zinc-ion hybrid supercapacitors Porous carbon fibers Hierarchical porous structures ELECTROSPINNING
原文传递
Hydrophilic polyanionic hydrogel electrolyte for anti-freezing and bending resistant zinc-ion hybrid supercapacitors
19
作者 Xuejuan Wan Hangqi Song +3 位作者 Zejia Zhao Zuocai Zhang Jingwei Wang Junye Cheng 《Journal of Materiomics》 SCIE CSCD 2024年第6期1299-1307,共9页
Zinc-ion hybrid supercapacitors(ZHSCs)have been widely considered as promising candidates for flexible electrochemical energy storage devices.The key challenge is to develop hydrogel electrolytes with high hydrophilic... Zinc-ion hybrid supercapacitors(ZHSCs)have been widely considered as promising candidates for flexible electrochemical energy storage devices.The key challenge is to develop hydrogel electrolytes with high hydrophilicity,anti-freezing,bending resistance,and stable interface with electrodes.This study reported a hydrogel electrolyte system that can meet the above functions,in which the zincophilic and negatively charged SO_(3)^(−),migratable Na^(+),abundant hydrophilic functional groups,gum xanthan,and porous architecture could effectively promote the electrochemical performance of ZHSCs.ZHSCs with such hydrogel electrolytes not only exhibited good low-temperature performance but also showed excellent bending resistance ability.A high specific capacitance could be kept after a long air-working lifespan over 10,000 cycles under a wide operation voltage of 1.85 V at−10℃.Furthermore,flexible ZHSCs could maintain the capacitance retention of 93.18%even after continuous 500 bends at an angle of 180°.The designed hydrogel electrolytes could be also used for other electrochemical energy storage devices with anti-freezing and bending resistance by changing electrolyte salt. 展开更多
关键词 Zn-ion hybrid supercapacitors Polyanionic ANTI-FREEZING Bending resistance Porous architecture
原文传递
Dual-ion pre-inserted Mo glycerate template for constructing NiMo-OS core–shell structure with boosting performance in zinc ions hybrid supercapacitors 被引量:1
20
作者 Shujing Chen Zhengpeng Xiang +3 位作者 Zhenyu Xiao Kun-Peng Wang Qi Zhang Lei Wang 《Nano Research》 SCIE EI CSCD 2023年第5期6922-6932,共11页
Zinc ion hybrid supercapacitors(ZHS)have received much attention due to the enhanced potential window range and high specific capacity.However,the appropriate positive materials with high electrochemical performance a... Zinc ion hybrid supercapacitors(ZHS)have received much attention due to the enhanced potential window range and high specific capacity.However,the appropriate positive materials with high electrochemical performance are still a challenge.Herein,NH_(4)^(+)and glycerate anions pre-inserted Mo glycerate(N-MoG)spheres are synthesized and serve as the template to form NH_(4)^(+)intercalated Ni_(3)S_(2)/Ni_(3)O_(2)(OH)_(4)@MoS_(2)core–shell nanoflower(N-NiMo-OS)in-situ grown on nickel foam(NF)(N-NiMo-OS/NF)by sulfurization treatment.Compared with the product using traditional MoG as a template,N-NiMo-OS/NF inheriting a larger core structure from N-MoG delivers enhanced space for ions transport and volume expansion during the energy storage process,together with the synergistic effects of multi-components and the heterostructure,the as-prepared N-NiMo-OS/NF nanoflower exhibits excellent performance for the battery-type hybrid supercapacitors(BHS)and ZHS devices.Notably,the ZHS device delivers superior electrochemical performance to the BHS device,such as a higher specific capacity of 327.5 mAh·g^(−1)at 1 A·g^(−1),a preeminent energy density of 610.6 Wh·kg^(−1)at 1710 W·kg^(−1),long cycle life.The in-situ Raman,ex-situ X-ray photoelectron spectroscopy(XPS),theoretical calculation demonstrate the extra Zn^(2+)insertion/extraction storage mechanism provides enhanced electrochemical performance for ZHS device.Therefore,the dual-ion pre-inserted strategy can be extended for other advanced electrode materials in energy storage fields. 展开更多
关键词 NH_(4)^(+)and glycerate anions pre-inserted Mo glycerate(N-MoG)spheres NH_(4)^(+)intercalated Ni_(3)S_(2)/Ni_(3)O_(2)(OH)_(4)@MoS_(2)core–shell nanoflower(N-NiMo-OS)in-situ grown on nickel foam(NF)(N-NiMo-OS/NF)nanoflower battery-type hybrid supercapacitors zinc ions hybrid supercapacitors
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部