A facile encapsulation strategy for the preparation of metal layer/metal-organic framework (metal/MOF) hybrid thin films, by alternately growing MOF thin films and sputter-coating metal layers, is reported. The cont...A facile encapsulation strategy for the preparation of metal layer/metal-organic framework (metal/MOF) hybrid thin films, by alternately growing MOF thin films and sputter-coating metal layers, is reported. The controlled species of the MOF thin films and metal layers, as well as the designed thickness of MOF thin films, endow the resulting hybrid thin films with improved functional and design flexibility. Importantly, the metaL/MOF hybrid thin films, with well-defined sandwich structures, exhibit excellent selective catalytic activity, derived from MOFs acting as molecular sieves and the metal layers providing active sites.展开更多
基金The project was supported by the Jiangsu Provincial Founds for Distringuished Young Scholars (No. 55135011), start-up fund at Nanjing Tech University and the National Natural Science Foundation (Nos. 21574065 and 21504043).
文摘A facile encapsulation strategy for the preparation of metal layer/metal-organic framework (metal/MOF) hybrid thin films, by alternately growing MOF thin films and sputter-coating metal layers, is reported. The controlled species of the MOF thin films and metal layers, as well as the designed thickness of MOF thin films, endow the resulting hybrid thin films with improved functional and design flexibility. Importantly, the metaL/MOF hybrid thin films, with well-defined sandwich structures, exhibit excellent selective catalytic activity, derived from MOFs acting as molecular sieves and the metal layers providing active sites.