The hybrid tracked vehicles(HTV)usually adopt series hybrid powertrain with extra steering mechanism,which has relatively low transmission efficiency and reduces the flexibility of structural arrangement.To overcome t...The hybrid tracked vehicles(HTV)usually adopt series hybrid powertrain with extra steering mechanism,which has relatively low transmission efficiency and reduces the flexibility of structural arrangement.To overcome the disadvantages,a new kind of single-mode powertrain has been proposed.The power-split hybrid powertrain is composed of three planetary gear(PG)sets connected to one engine,left and right track outputs,and three motors.The proposed powertrain can realize steering while going forward by controlling the output torque on each side without extra steering mechanism or steering shaft.Due to the diversity of the connection way between components and planetary gear sets,a rapid configuration design approach is proposed for the design selection of HTV.The automated dynamic modelling method can show the one-to-one correspondence with the selected feasible groups by establishing two characteristic matrices,which is more simple than other researches.The analytically-based method is proposed to classify all possible connection designs into several groups to decrease the searching scope with improved design efficiency.Finally,the optimal control strategy is used to find the design with optimal fuel economy under typical condition of HTV.The case study is implemented by the proposed design approach which demonstrates better design performances compared with the existing series-hybrid HTV.展开更多
To solve the problem of power distribution for hybrid tracked vehicles (HTV), a supervi- sory control strategy is proposed. Firstly, power system integration is analyzed and modeled. Then the control algorithm is gi...To solve the problem of power distribution for hybrid tracked vehicles (HTV), a supervi- sory control strategy is proposed. Firstly, power system integration is analyzed and modeled. Then the control algorithm is given. Two fuzzy logics are used to realize the coordination control over each power unit. One controls power distribution based on the load power and battery state of charge (SOC). The other manage the power during regenerating braking. To validate the presented control strategy, a "driver and controller" in the loop simulation platform is built based on dSPACE system and real-time simulation is made. The simulation results show that the strategy presented can solve the power distribution problem of hybrid tracked vehicles correctly and effectively.展开更多
The performance of adding additional inertial data to improve the accuracy and robustness of visual tracking is investigated. For this real-time structure and motion algorithm, fusion is based on Kalman filter framewo...The performance of adding additional inertial data to improve the accuracy and robustness of visual tracking is investigated. For this real-time structure and motion algorithm, fusion is based on Kalman filter framework while using an extended Kalman filter to fuse the inertial and vision data, and a hank of Kalman filters to estimate the sparse 3D structure of the real scene. A simple, known target is used for the initial pose estimation. Motion and structure estimation filters can work alternately to recover the sensor motion, scene structure and other parameters. Real image sequences are utilized to test the capability of this algorithm. Experimental results show that the proper use of an additional inertial information can not only effectively improve the accuracy of the pose and structure estimation, but also handle occlusion problem.展开更多
基金Project(CIT&TCD20190304)supported by the Beijing Great Scholars Program,China。
文摘The hybrid tracked vehicles(HTV)usually adopt series hybrid powertrain with extra steering mechanism,which has relatively low transmission efficiency and reduces the flexibility of structural arrangement.To overcome the disadvantages,a new kind of single-mode powertrain has been proposed.The power-split hybrid powertrain is composed of three planetary gear(PG)sets connected to one engine,left and right track outputs,and three motors.The proposed powertrain can realize steering while going forward by controlling the output torque on each side without extra steering mechanism or steering shaft.Due to the diversity of the connection way between components and planetary gear sets,a rapid configuration design approach is proposed for the design selection of HTV.The automated dynamic modelling method can show the one-to-one correspondence with the selected feasible groups by establishing two characteristic matrices,which is more simple than other researches.The analytically-based method is proposed to classify all possible connection designs into several groups to decrease the searching scope with improved design efficiency.Finally,the optimal control strategy is used to find the design with optimal fuel economy under typical condition of HTV.The case study is implemented by the proposed design approach which demonstrates better design performances compared with the existing series-hybrid HTV.
基金Supported by the National Natural Science Foundation of China ( 50975027 )the Fundamental Research Funds for the Central Universities( N110303007)
文摘To solve the problem of power distribution for hybrid tracked vehicles (HTV), a supervi- sory control strategy is proposed. Firstly, power system integration is analyzed and modeled. Then the control algorithm is given. Two fuzzy logics are used to realize the coordination control over each power unit. One controls power distribution based on the load power and battery state of charge (SOC). The other manage the power during regenerating braking. To validate the presented control strategy, a "driver and controller" in the loop simulation platform is built based on dSPACE system and real-time simulation is made. The simulation results show that the strategy presented can solve the power distribution problem of hybrid tracked vehicles correctly and effectively.
基金the National"973"Program Project (2002CB312104)the National Natural Science Foundation of China(60673198)
文摘The performance of adding additional inertial data to improve the accuracy and robustness of visual tracking is investigated. For this real-time structure and motion algorithm, fusion is based on Kalman filter framework while using an extended Kalman filter to fuse the inertial and vision data, and a hank of Kalman filters to estimate the sparse 3D structure of the real scene. A simple, known target is used for the initial pose estimation. Motion and structure estimation filters can work alternately to recover the sensor motion, scene structure and other parameters. Real image sequences are utilized to test the capability of this algorithm. Experimental results show that the proper use of an additional inertial information can not only effectively improve the accuracy of the pose and structure estimation, but also handle occlusion problem.