In order to improve the performance of whole-spacecraft vibration isolation systems,choosing piezoelectric stacks and viscoelastic material as the active and passive vibration isolation components,an innovative whole-...In order to improve the performance of whole-spacecraft vibration isolation systems,choosing piezoelectric stacks and viscoelastic material as the active and passive vibration isolation components,an innovative whole-spacecraft hybrid vibration isolation system (WSHVIS) is designed and studied.The finite element method is used to establish the dynamic model of WSHVIS and analyze its frequency response characteristic.According to the analysis results,eigensystem realization algorithm is applied to obtain the minimum-order state-space model of WSHVIS,which is used to design controller.On this basis,off-line simulation and on-line realization for the WSHVIS is performed.The simulation and experimental results showed that WSHVIS can effectively reduce the vibration loads transmitted from launch vehicle to spacecraft.Compared with passive vibration isolation system,the hybrid vibration isolation system has a significant inhibitory effect on the low-frequency vibration components,and can greatly increase the safety and reliability of spacecraft.展开更多
The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platf...The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.展开更多
基金Sponsored by the Commission of Science Technology and Industry for National Defense (Grant No.C4120062301)
文摘In order to improve the performance of whole-spacecraft vibration isolation systems,choosing piezoelectric stacks and viscoelastic material as the active and passive vibration isolation components,an innovative whole-spacecraft hybrid vibration isolation system (WSHVIS) is designed and studied.The finite element method is used to establish the dynamic model of WSHVIS and analyze its frequency response characteristic.According to the analysis results,eigensystem realization algorithm is applied to obtain the minimum-order state-space model of WSHVIS,which is used to design controller.On this basis,off-line simulation and on-line realization for the WSHVIS is performed.The simulation and experimental results showed that WSHVIS can effectively reduce the vibration loads transmitted from launch vehicle to spacecraft.Compared with passive vibration isolation system,the hybrid vibration isolation system has a significant inhibitory effect on the low-frequency vibration components,and can greatly increase the safety and reliability of spacecraft.
基金the National Natural Science Foundation of China (No. 11572215)the Fundamental Research Funds for the Central Universities (No. N160503002)the China Scholarship Council。
文摘The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.