By the modified three-field Hu-Washizu principle, this paper establishes a theoretical founda- tion and general convenient formulations to generate convergent stable generalized hybrid/mixed cle- ment (GH/ME) model wh...By the modified three-field Hu-Washizu principle, this paper establishes a theoretical founda- tion and general convenient formulations to generate convergent stable generalized hybrid/mixed cle- ment (GH/ME) model which is invariant with respect to coordinate, insensitive to geometric distortion and suitable for improved stress computation. In the two proposed formulations, the stress equilibrium and orthogonality constraints are imposed through incompatible displacement and internal strain modes respectively. The proposed model by the general formulations in this paper is characterized by including as- sumed stress/strain, assumed stress, variable-node, singular, compatible and incompatible GH/ME models. When using regular meshes or the constant values of the isoparametric Jacobian Det in the assumed strain in- terpolation, the incompatible GH/ME model degenerates to the hybrid/mixed element model. Both general and concrete guidelines for the optimal selection of element shape functions are suggested. By means of the GH/ME theory in this paper, a family of new GH/ME can be and have been easily constructed. The software can also be developed conveniently because all the standard subroutines for the corresponding isoparametric displacement elements can be utilized directly.展开更多
This study examines the effects of heat, mass, and boundary layer assumptions-based nanoparticle characteristics on the hybrid effects of using MHD in conjunction with mixed convective flow through a sloped vertical p...This study examines the effects of heat, mass, and boundary layer assumptions-based nanoparticle characteristics on the hybrid effects of using MHD in conjunction with mixed convective flow through a sloped vertical pore plate in the existence of medium of porous. Physical characteristics such as thermo-diffusion, injection-suction, and viscous dissipation are taken into consideration, in addition to an equally distributed magnetic force utilized as well in the completely opposite path of the flow. By means of several non-dimensional transformations, the momentum, energy, concentration, and nanoparticle volume fraction equations under investigation are converted in terms of nonlinear boundary layer equations and computationally resolved by utilizing the sixth-order Runge-Kutta strategy in combination together with the iteration of Nachtsheim-Swigert shooting procedure. By contrasting the findings produced for a few particular examples with those found in the published literature, the correctness of the numerical result is verified, and a rather good agreement is found. Utilizing various ranges of pertinent factors, computing findings are determined not only regarding velocity, temperature, and concentration as well as nanoparticle fraction of volume but also concerning with local skin-friction coefficient, local Nusselt and general Sherwood numbers associated with nanoparticle Sherwood number. The findings of the study demonstrate that increasing the fluid suction parameter decreases the velocity and temperature of the flow field in conjunction with concentration and has a variable impact on the nanoparticle fraction of volume, despite an increasing behavior in the local skin friction coefficient and local Nusselt as well as general Sherwood numbers and an increasing behavior in the local nanoparticle Sherwood number. Furthermore, enhancing a Schmidt number leads to a reduction in the local nanoparticle Sherwood number and a rise in the nanoparticle proportion of volume. Along with concentration, it also reduces temperature and velocity. However, it also raises the local Sherwood and Nusselt numbers and reduces the local skin friction coefficient.展开更多
The multiscale hybrid-mixed(MHM)method is applied to the numerical approximation of two-dimensional matrix fluid flow in porous media with fractures.The two-dimensional fluid flow in the reservoir and the one-dimensio...The multiscale hybrid-mixed(MHM)method is applied to the numerical approximation of two-dimensional matrix fluid flow in porous media with fractures.The two-dimensional fluid flow in the reservoir and the one-dimensional flow in the discrete fractures are approximated using mixed finite elements.The coupling of the two-dimensional matrix flow with the one-dimensional fracture flow is enforced using the pressure of the one-dimensional flow as a Lagrange multiplier to express the conservation of fluid transfer between the fracture flow and the divergence of the one-dimensional fracture flux.A zero-dimensional pressure(point element)is used to express conservation of mass where fractures intersect.The issuing simulation is then reduced using the MHM method leading to accurate results with a very reduced number of global equations.A general system was developed where fracture geometries and conductivities are specified in an input file and meshes are generated using the public domain mesh generator GMsh.Several test cases illustrate the effectiveness of the proposed approach by comparing the multiscale results with direct simulations.展开更多
On the basis of composition duality principles, augmented three-field macrohybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualiza...On the basis of composition duality principles, augmented three-field macrohybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualization, is the coupling operator surjectivity, property that expresses in a general operator sense the Ladysenskaja-Babulka-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decompositions. Then, through compositional dualization macro-hybrid mixed problems are obtained, with internal boundary dual traces as Lagrange multipliers. Also, "mass" preconditioned aug- mentation of three-field formulations are derived, stabilizing macro-hybrid mixed finite element schemes and rendering possible speed up of rates of convergence. Dual mixed incompressible Darcy flow problems illustrate the theory throughout the paper.展开更多
This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress...This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress can be naturally satisfied. The gene-rallzed variational principles with mixed hybrid incompatible finite elements are alsopresented and proved, and they can reduce the computation of incompatible elements indynamics of viscous barotropic flows.展开更多
The penalty and hybrid methods are being much used in dealing with the general incompatible element, With the penalty method convergence can always be assured, but comparatively speaking its accuracy is lower, and the...The penalty and hybrid methods are being much used in dealing with the general incompatible element, With the penalty method convergence can always be assured, but comparatively speaking its accuracy is lower, and the condition number and sparsity are not so good. With the hybrid method, convergence can be assured only when the rank condition is satisfied. So the construction of the element is extremely limited. This paper presents the mixed hybrid penalty element method, which combines the two methods together. And it is proved theoretically that this new method is convergent, and it has the same accuracy, condition number and sparsity as the compatible element. That is to say, they are optimal to each other.Finally, a new triangle element for plate bending with nine freedom degrees is constructed with this method (three degreesof freedom are given on each corner -- one displacement and tworotations), the calculating formula of the element stiffness matrix is almost the same as that of the old triangle element for plate bending with nine degrees of freedom But it is converged to true solution with arbitrary irregrlar triangle subdivision. If the true solution u?H3 with this method the linear and quadratic rates of convergence are obtianed for three bending moments and for the displacement and two rotations respectively.展开更多
Based on the potential-hybrid/mixed finite element scheme, 4-node quadrilateral plate-bending elements MP4, MP4a and cylindrical shell element MCS4 are derived with, the inclusion of splitting rotations. All these ele...Based on the potential-hybrid/mixed finite element scheme, 4-node quadrilateral plate-bending elements MP4, MP4a and cylindrical shell element MCS4 are derived with, the inclusion of splitting rotations. All these elements demonstrate favorable convergence behavior over the existing counterparts, free from spurious kinematic mode's and do not exhibit locking phenomenon in thin platef shell limit. Inter-connections between the existing modified variational functionals for the use of formulating C0-and C1-continuous elements are also indicated. Important particularizations of the present scheme include Prathop's consistent field formulation, the RIT/SRIT-compatible displacement model and so on.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R...Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.展开更多
A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation ...A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.展开更多
The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
A nonlinear parabolic system is derived to describe incompressible nuclear waste-disposal contamination in porous media. A sequential implicit tirne-stepping is defined, in which the pressure and Darcy velocity of the...A nonlinear parabolic system is derived to describe incompressible nuclear waste-disposal contamination in porous media. A sequential implicit tirne-stepping is defined, in which the pressure and Darcy velocity of the mixture are approximated simultaneously by a mixed finite element method and the brine, radionuclid and heat are treated by a combination of a Galerkin finite element method and the method of characteristics. Optimal-order convergence in L2 is proved. Time-truncation errors of standard procedures are reduced by time stepping along the characteristics of the hyperbolic part of the brine, radionuclide and heal equalios, temporal and spatial error are lossened by direct compulation of the velocity in the mixed method, as opposed to differentiation of the pressure.展开更多
In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computat...In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computation, an alternating-direction iterative scheme of the mixed fi-nite element method is formulated and its stability and converbence are proved for the linear prob-lem. A numerical example is provided at the end of this paper.展开更多
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order...A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.展开更多
Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estima...Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estimates standard mixed finite spaces. Moreover, these two schemes provide the with first-order and second-order accuracy in time increment, respectively.展开更多
The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat...The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.展开更多
The mixed convection flow of a hybrid nanofluid in an inclined channel with top wall-slip due to wall stripe and constant heat flux conditions is studied.Explicit analytical solutions are given to the flow velocity,te...The mixed convection flow of a hybrid nanofluid in an inclined channel with top wall-slip due to wall stripe and constant heat flux conditions is studied.Explicit analytical solutions are given to the flow velocity,temperature,as well as the pressure in non-dimensional forms.The flow regime domain,the velocity and temperature distributions,and the dependence of various physical parameters such as the hybrid nanoparticle volume fractions,the wall-slip,the Grashof number,the Reynolds number,and the inclined angle are analyzed and discussed.It is found that the hybrid nanofluid delays the appearance of flow reversal on both walls and the wall-slip postpones the flow reversal on the top wall.展开更多
Objective:To investigate the effect of moxibustion combined with five‑element music therapy on the postoperative pain relief of patients undergoing surgical operation for mixed hemorrhoid with damp‑heat syndrome.Metho...Objective:To investigate the effect of moxibustion combined with five‑element music therapy on the postoperative pain relief of patients undergoing surgical operation for mixed hemorrhoid with damp‑heat syndrome.Methods:Totally,159 patients meeting the inclusion criteria were assigned to the control group,study group 1,and study group 2,with 53 cases in each group.All patients received routine care after surgical treatment,including acupoint application and Chinese herbal fumigation.In addition,patients in the study group 1 received moxibustion,and those in the study group 2 were given moxibustion combined with five‑element music therapy.The degree of postoperative pain was evaluated using visual analog scale(VAS).Results:There was no significant difference in VAS score on pain during dressing changes among three groups(P>0.05).After 3,5,and 7 days of intervention,there was a significant difference in VAS score on pain at rest among three groups(P<0.001),and VAS score in the study group 2 was lower than that in the study group 1 and the control group after 3 and 5 days of intervention,respectively(P<0.05).Conclusion:Moxibustion combined with five‑element music therapy is effective to relieve the postoperative pain of patients undergoing a surgical operation for mixed hemorrhoids with damp‑heat syndrome.展开更多
Mixed element formats of any order based on bubble functions for the stationary Stokes problem are derived in triangular and tetrahedral meshes and the convergence of these formats are proved.
This article aims to investigate the Darcy Forchhemier mixed convection flow of the hybrid nanofluid through an inclined extending cylinder.Two different nanoparticles such as carbon nanotubes(CNTs)and iron oxide Fe3O...This article aims to investigate the Darcy Forchhemier mixed convection flow of the hybrid nanofluid through an inclined extending cylinder.Two different nanoparticles such as carbon nanotubes(CNTs)and iron oxide Fe3O4 have been added to the base fluid in order to prepare a hybrid nanofluid.Nonlinear partial differential equations for momentum,energy and convective diffusion have been changed into dimensionless ordinary differential equations after using Von Karman approach.Homotopy analysis method(HAM),a powerful analytical approach has been used to find the solution to the given problem.The effects of the physical constraints on velocity,concentration and temperature profile have been drawn as well for discussion purpose.The numerical outcomes have been carried out for the drag force,heat transfer rate and diffusion rate etc.The Biot number of heat and mass transfer affects the fluid temperature whereas the Forchhemier parameter and the inclination angle decrease the velocity of the fluid flow.The results show that hybrid nanofluid is the best source of enhancing heat transfer and can be used for cooling purposes as well.展开更多
文摘By the modified three-field Hu-Washizu principle, this paper establishes a theoretical founda- tion and general convenient formulations to generate convergent stable generalized hybrid/mixed cle- ment (GH/ME) model which is invariant with respect to coordinate, insensitive to geometric distortion and suitable for improved stress computation. In the two proposed formulations, the stress equilibrium and orthogonality constraints are imposed through incompatible displacement and internal strain modes respectively. The proposed model by the general formulations in this paper is characterized by including as- sumed stress/strain, assumed stress, variable-node, singular, compatible and incompatible GH/ME models. When using regular meshes or the constant values of the isoparametric Jacobian Det in the assumed strain in- terpolation, the incompatible GH/ME model degenerates to the hybrid/mixed element model. Both general and concrete guidelines for the optimal selection of element shape functions are suggested. By means of the GH/ME theory in this paper, a family of new GH/ME can be and have been easily constructed. The software can also be developed conveniently because all the standard subroutines for the corresponding isoparametric displacement elements can be utilized directly.
文摘This study examines the effects of heat, mass, and boundary layer assumptions-based nanoparticle characteristics on the hybrid effects of using MHD in conjunction with mixed convective flow through a sloped vertical pore plate in the existence of medium of porous. Physical characteristics such as thermo-diffusion, injection-suction, and viscous dissipation are taken into consideration, in addition to an equally distributed magnetic force utilized as well in the completely opposite path of the flow. By means of several non-dimensional transformations, the momentum, energy, concentration, and nanoparticle volume fraction equations under investigation are converted in terms of nonlinear boundary layer equations and computationally resolved by utilizing the sixth-order Runge-Kutta strategy in combination together with the iteration of Nachtsheim-Swigert shooting procedure. By contrasting the findings produced for a few particular examples with those found in the published literature, the correctness of the numerical result is verified, and a rather good agreement is found. Utilizing various ranges of pertinent factors, computing findings are determined not only regarding velocity, temperature, and concentration as well as nanoparticle fraction of volume but also concerning with local skin-friction coefficient, local Nusselt and general Sherwood numbers associated with nanoparticle Sherwood number. The findings of the study demonstrate that increasing the fluid suction parameter decreases the velocity and temperature of the flow field in conjunction with concentration and has a variable impact on the nanoparticle fraction of volume, despite an increasing behavior in the local skin friction coefficient and local Nusselt as well as general Sherwood numbers and an increasing behavior in the local nanoparticle Sherwood number. Furthermore, enhancing a Schmidt number leads to a reduction in the local nanoparticle Sherwood number and a rise in the nanoparticle proportion of volume. Along with concentration, it also reduces temperature and velocity. However, it also raises the local Sherwood and Nusselt numbers and reduces the local skin friction coefficient.
文摘The multiscale hybrid-mixed(MHM)method is applied to the numerical approximation of two-dimensional matrix fluid flow in porous media with fractures.The two-dimensional fluid flow in the reservoir and the one-dimensional flow in the discrete fractures are approximated using mixed finite elements.The coupling of the two-dimensional matrix flow with the one-dimensional fracture flow is enforced using the pressure of the one-dimensional flow as a Lagrange multiplier to express the conservation of fluid transfer between the fracture flow and the divergence of the one-dimensional fracture flux.A zero-dimensional pressure(point element)is used to express conservation of mass where fractures intersect.The issuing simulation is then reduced using the MHM method leading to accurate results with a very reduced number of global equations.A general system was developed where fracture geometries and conductivities are specified in an input file and meshes are generated using the public domain mesh generator GMsh.Several test cases illustrate the effectiveness of the proposed approach by comparing the multiscale results with direct simulations.
文摘On the basis of composition duality principles, augmented three-field macrohybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualization, is the coupling operator surjectivity, property that expresses in a general operator sense the Ladysenskaja-Babulka-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decompositions. Then, through compositional dualization macro-hybrid mixed problems are obtained, with internal boundary dual traces as Lagrange multipliers. Also, "mass" preconditioned aug- mentation of three-field formulations are derived, stabilizing macro-hybrid mixed finite element schemes and rendering possible speed up of rates of convergence. Dual mixed incompressible Darcy flow problems illustrate the theory throughout the paper.
文摘This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress can be naturally satisfied. The gene-rallzed variational principles with mixed hybrid incompatible finite elements are alsopresented and proved, and they can reduce the computation of incompatible elements indynamics of viscous barotropic flows.
文摘The penalty and hybrid methods are being much used in dealing with the general incompatible element, With the penalty method convergence can always be assured, but comparatively speaking its accuracy is lower, and the condition number and sparsity are not so good. With the hybrid method, convergence can be assured only when the rank condition is satisfied. So the construction of the element is extremely limited. This paper presents the mixed hybrid penalty element method, which combines the two methods together. And it is proved theoretically that this new method is convergent, and it has the same accuracy, condition number and sparsity as the compatible element. That is to say, they are optimal to each other.Finally, a new triangle element for plate bending with nine freedom degrees is constructed with this method (three degreesof freedom are given on each corner -- one displacement and tworotations), the calculating formula of the element stiffness matrix is almost the same as that of the old triangle element for plate bending with nine degrees of freedom But it is converged to true solution with arbitrary irregrlar triangle subdivision. If the true solution u?H3 with this method the linear and quadratic rates of convergence are obtianed for three bending moments and for the displacement and two rotations respectively.
文摘Based on the potential-hybrid/mixed finite element scheme, 4-node quadrilateral plate-bending elements MP4, MP4a and cylindrical shell element MCS4 are derived with, the inclusion of splitting rotations. All these elements demonstrate favorable convergence behavior over the existing counterparts, free from spurious kinematic mode's and do not exhibit locking phenomenon in thin platef shell limit. Inter-connections between the existing modified variational functionals for the use of formulating C0-and C1-continuous elements are also indicated. Important particularizations of the present scheme include Prathop's consistent field formulation, the RIT/SRIT-compatible displacement model and so on.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
基金supported by the National Natural Science Foundation of China (Grant 11502286)
文摘Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.
基金Project supported by the National Natural Science Foundation of China(Nos.10971203,11271340,and 11101381)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006)
文摘A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
基金The research was supported by the Natural Science Foundation of China
文摘A nonlinear parabolic system is derived to describe incompressible nuclear waste-disposal contamination in porous media. A sequential implicit tirne-stepping is defined, in which the pressure and Darcy velocity of the mixture are approximated simultaneously by a mixed finite element method and the brine, radionuclid and heat are treated by a combination of a Galerkin finite element method and the method of characteristics. Optimal-order convergence in L2 is proved. Time-truncation errors of standard procedures are reduced by time stepping along the characteristics of the hyperbolic part of the brine, radionuclide and heal equalios, temporal and spatial error are lossened by direct compulation of the velocity in the mixed method, as opposed to differentiation of the pressure.
基金the National Natural Science Foundation of China and China State Key Project for Basic Researches
文摘In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computation, an alternating-direction iterative scheme of the mixed fi-nite element method is formulated and its stability and converbence are proved for the linear prob-lem. A numerical example is provided at the end of this paper.
基金supported by the National Natural Science Foundation of China (No. 10601022)NSF ofInner Mongolia Autonomous Region of China (No. 200607010106)513 and Science Fund of InnerMongolia University for Distinguished Young Scholars (No. ND0702)
文摘A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.
基金Supported by by the National Science Foundation for Young Scholars of China(11101431)the Fundamental Research Funds for the Central Universities (12CX04082A,10CX04041A)Shandong Province Natural Science Foundation of China(ZR2010AL020)
文摘Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estimates standard mixed finite spaces. Moreover, these two schemes provide the with first-order and second-order accuracy in time increment, respectively.
基金the National Natural Science Foundation of China(No.11572210).
文摘The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.
基金Project supported by the National Natural Science Foundation of China(No.11872241)。
文摘The mixed convection flow of a hybrid nanofluid in an inclined channel with top wall-slip due to wall stripe and constant heat flux conditions is studied.Explicit analytical solutions are given to the flow velocity,temperature,as well as the pressure in non-dimensional forms.The flow regime domain,the velocity and temperature distributions,and the dependence of various physical parameters such as the hybrid nanoparticle volume fractions,the wall-slip,the Grashof number,the Reynolds number,and the inclined angle are analyzed and discussed.It is found that the hybrid nanofluid delays the appearance of flow reversal on both walls and the wall-slip postpones the flow reversal on the top wall.
文摘Objective:To investigate the effect of moxibustion combined with five‑element music therapy on the postoperative pain relief of patients undergoing surgical operation for mixed hemorrhoid with damp‑heat syndrome.Methods:Totally,159 patients meeting the inclusion criteria were assigned to the control group,study group 1,and study group 2,with 53 cases in each group.All patients received routine care after surgical treatment,including acupoint application and Chinese herbal fumigation.In addition,patients in the study group 1 received moxibustion,and those in the study group 2 were given moxibustion combined with five‑element music therapy.The degree of postoperative pain was evaluated using visual analog scale(VAS).Results:There was no significant difference in VAS score on pain during dressing changes among three groups(P>0.05).After 3,5,and 7 days of intervention,there was a significant difference in VAS score on pain at rest among three groups(P<0.001),and VAS score in the study group 2 was lower than that in the study group 1 and the control group after 3 and 5 days of intervention,respectively(P<0.05).Conclusion:Moxibustion combined with five‑element music therapy is effective to relieve the postoperative pain of patients undergoing a surgical operation for mixed hemorrhoids with damp‑heat syndrome.
基金Supported by National Natural Science Foundation of China(11371331)Supported by the Natural Science Foundation of Education Department of Henan Province(14B110018)
文摘Mixed element formats of any order based on bubble functions for the stationary Stokes problem are derived in triangular and tetrahedral meshes and the convergence of these formats are proved.
文摘This article aims to investigate the Darcy Forchhemier mixed convection flow of the hybrid nanofluid through an inclined extending cylinder.Two different nanoparticles such as carbon nanotubes(CNTs)and iron oxide Fe3O4 have been added to the base fluid in order to prepare a hybrid nanofluid.Nonlinear partial differential equations for momentum,energy and convective diffusion have been changed into dimensionless ordinary differential equations after using Von Karman approach.Homotopy analysis method(HAM),a powerful analytical approach has been used to find the solution to the given problem.The effects of the physical constraints on velocity,concentration and temperature profile have been drawn as well for discussion purpose.The numerical outcomes have been carried out for the drag force,heat transfer rate and diffusion rate etc.The Biot number of heat and mass transfer affects the fluid temperature whereas the Forchhemier parameter and the inclination angle decrease the velocity of the fluid flow.The results show that hybrid nanofluid is the best source of enhancing heat transfer and can be used for cooling purposes as well.