期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
MXene-based hybrid materials for electrochemical and photoelectrochemical H_(2) generation
1
作者 Jun Young Kim Seung Hun Roh +2 位作者 Chengkai Xia Uk Sim Jung Kyu Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期111-125,I0004,共16页
The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global deman... The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global demand for the development of an ideal energy alternative to fossil fuels that does not emit greenhouse gases.Electrochemical(EC) and photoelectrochemical(PEC) water splitting technologies have garnered significant attention worldwide for advanced hydrogen solar fuel production in recent decades.To achieve sustainable green H_(2) production,it is essential to create efficient catalyst materials that are low-cost and can replace expensive noble metal-based catalysts.These characteristics make them an ideal catalyst material for the process.Two-dimensional MXenes with M_(n+1)X_(n) structure have been identified as a promising option for EC and PEC water splitting due to their superior hydrophilicity,metal-like conductivity,large surface area,and adjustable surface chemistry.Here,we present a summary of recent advancements in the synthesis and performance enhancement methods for MXene hybrid materials in hydrogen production through EC and PEC water splitting.Furthermore,we examine the challenges and insights associated with the rational design of MXene-based hybrid materials to facilitate efficient water splitting for sustainable solar fuel production. 展开更多
关键词 MXene Hybrid materials EC PEC HER OER Water splitting
下载PDF
Fabrication of branch-like Aph@LDH-MgO material through organic-inorganic hybrid conjugation for excellent anti-corrosion performance
2
作者 Maryam Chafiq Abdelkarim Chaouiki +1 位作者 Rachid Salghi Young Gun Ko 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2469-2485,共17页
Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid mater... Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance. 展开更多
关键词 Magnesium alloy Surface modification LDH Organic-inorganic hybrid materials Inter-/intra-molecular interactions
下载PDF
Synthesis and characterization of hybrid organic-inorganic materials based on EA-MAn-APTES and silica 被引量:1
3
作者 邱凤仙 周钰明 +1 位作者 刘举正 张旭苹 《Journal of Southeast University(English Edition)》 EI CAS 2005年第1期63-67,共5页
Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTE... Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability. 展开更多
关键词 organic-inorganic hybrid material sol-gel process Ethyl acrylate maleicanhydride 3-aminopropyltriethoxysilane (APTES)
下载PDF
Effective multifunctional coatings with polyvinylpyrrolidone-enhanced ZIF-67 and zinc iron layered double hydroxide on microarc oxidation treated AZ31 magnesium alloy
4
作者 Mohammad Aadil Ananda Repycha Safira +2 位作者 Arash Fattah-alhosseini Mohammad Alkaseem Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3729-3743,共15页
Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electroc... Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electrochemical and photocatalytic performance.In this study,we present the development of an optimized nanocomposite,denoted as 0.5PVP/ZIF-67,developed on AZ31 magnesium alloy,serving as an efficient and durable multifunctional coating.This novel strategy aims to enhance the overall performance of the porous coating through the integration of microarc oxidation(MAO),ZnFe LDH backbone,and ZIF-67 formation facilitated by the addition of polyvinylpyrrolidone(PVP),resulting in a three-dimensional,highly efficient,and multifunctional material.The incorporation of 0.5 g of PVP proved to be effective in the size modulation of ZIF-67,which formed a corrosion-resistant top layer,improving the total polarization resistance(R_(p)=8.20×10^(8)).The dual functionality exhibited by this hybrid architecture positions it as a promising candidate for mitigating environmental pollution,degrading 97.93%of Rhodamine B dye in 45 min.Moreover,the sample displayed exceptional degradation efficiency(96.17%)after 5 cycles.This study illuminates the potential of nanocomposites as electrochemically stable and photocatalytically active materials,laying the foundation for the advancements of next-generation multifunctional frameworks. 展开更多
关键词 Hybrid material POLYVINYLPYRROLIDONE Metal-organic framework Layered double hydroxide Corrosion Photocatalytic degradation
下载PDF
Nitrogen⁃doped 3D graphene⁃carbon nanotube network for efficient lithium storage
5
作者 XIE Jie XU Hongnan +3 位作者 LIAO Jianfeng CHEN Ruoyu SUN Lin JIN Zhong 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第10期1840-1849,共10页
A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incor... A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1). 展开更多
关键词 GRAPHENE carbon nanotube hybrid material ANODE lithium⁃ion battery
下载PDF
A perspective on carbon materials for future energy application 被引量:16
6
作者 Dang Sheng Su Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期151-173,共23页
Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and ou... Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions. 展开更多
关键词 NANOCARBON CNT GRAPHENE hybrid carbon materials sustainable energy energy storage and conversion solar cells Li-batteries supercapac-itors
下载PDF
Nanocellulose-Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform 被引量:7
7
作者 Abdelrahman Brakat Hongwei Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期231-267,共37页
Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,i... Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic-inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities.Altogether,the affinity,stability,dispersibility,modification,and functionalization are some of the key merits permitting their synergistic interfacial interactions,which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties.Moreover,the high performance of such hybrids could be achievable through green and straightforward approaches.In this context,the review covered the most advanced nanocellulose-graphene hybrids,focusing on their synthetization,functionalization,fabrication,and multi-sensing applications.These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical,environmental,and human bio-signals detections,mimicking,and in-situ monitoring. 展开更多
关键词 NANOCELLULOSE GRAPHENE NANOCOMPOSITES Hybrid materials Multi-sensing
下载PDF
SYNTHESIS OF MESOPOROUS POLY(STYRENE-co-MALEIC ANHYDRIDE)/SILICA HYBRID MATERIALS VIA A NONSURFACTANT-TEMPLATED SOL-GEL PROCESS 被引量:6
8
作者 Jie-bin Pang Kun-yuan Qiu Yen Wei Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, USA. 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2000年第5期469-472,共4页
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid... Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase. 展开更多
关键词 mesoporous hybrid material poly(styrene-co-maleic anhydride)/silica citric acid nonsurfactant template sol-gel process
下载PDF
Novel Hybrid Nanoparticles of Vanadium Nitride/Porous Carbon as an Anode Material for Symmetrical Supercapacitor 被引量:5
9
作者 Yunlong Yang Kuiwen Shen +5 位作者 Ying Liu Yongtao Tan Xiaoning Zhao Jiayu Wu Xiaoqin Niu Fen Ran 《Nano-Micro Letters》 SCIE EI CAS 2017年第1期89-103,共15页
Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 ... Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 °C for supercapacitor application. The effects of the feed ratio of V_2O_5 to melamine(r), and nitrogen flow rate on the microstructure and electrochemical performance were also investigated. It was found that the size of the as-synthesized nanoparticles is about 20 nm. Both r value and N_2 flow rate have enormous impacts on morphology and microstructure of the nanoparticle, which correspondingly determined the electrochemical performance of the material. The VN/C hybrid nanoparticles exhibited high capacitive properties, and a maximum specific capacitance of 255.0 Fg^(-1) was achieved at a current density of 1.0 Ag^(-1) in 2 M KOH aqueous electrolyte and the potential range from 0 to -1.15 V. In addition,symmetrical supercapacitor fabricated with the as-synthesized VN/PCNPs presents a high specific capacitance of 43.5 F g^(-1) at 0.5 A g^(-1) based on the entire cell, and an energy density of 8.0 Wh kg^(-1) when the power density was 575 W kg^(-1). Even when the power density increased to 2831.5 W kg^(-1), the energy density still remained 6.1 Wh kg^(-1). 展开更多
关键词 SUPERCAPACITORS NANOPARTICLE Vanadium nitride Porous carbon Hybrid materials
下载PDF
Characteristic evaluation of Al_2O_3/CNTs hybrid materials for micro-electrical discharge machining 被引量:4
10
作者 Hyun-Seok TAK Chang-Seung HA +3 位作者 Ho-Jun LEE Hyung-Woo LEE Young-Keun JEONG Myung-Chang KANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期28-32,共5页
The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were... The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. A1203 composites with different CNT concentrations were synthesized. The electrical characteristic of A1203/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% A1203 (volume fraction). In the machining accuracy, many tangles of CNT in A1203/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of A1203/CNTs hybrid composites. 展开更多
关键词 A1203/CNTs hybrid materials micro-electrical discharge machining MICRO-HOLE electrical conductivity
下载PDF
Sol Gel Assembly and Luminescence of SiO_2/PEMA Hybrid Material Incorporated with Terbium Complex 被引量:2
11
作者 闫冰 游佳勇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2002年第5期404-407,共4页
Ethyl methacrylate (EMA) doped with luminescent ternary terbium complex (Tb(acac) 3·dam) with acetylacetone (Hacac) and diantipylmethane (dam) was incorporated into the microporous silica gel. With the polymeriz... Ethyl methacrylate (EMA) doped with luminescent ternary terbium complex (Tb(acac) 3·dam) with acetylacetone (Hacac) and diantipylmethane (dam) was incorporated into the microporous silica gel. With the polymerization of EMA, the hybrid material containing Tb(acac) 3·dam was obtained. The hybrid material exhibited good toughness and transparency and higher thermal stability than that of the pure complex and pure polymer matrix. In the range of doping concentration of Tb(acac) 3·dam (0.05%, 0.1%, 0.2%, 0.5%, 1.0%, 2.0% and 5.0%), emission intensity increases with the increasing of corresponding doping concentration and concentration quenching effect has not taken place. 展开更多
关键词 rare earths sol gel assembly LUMINESCENCE hybrid material terbium complex
下载PDF
SYNTHESIS AND BIOTECHNOLOGICAL APPLICATIONS OF VINYL POLYMERINORGANIC HYBRID AND MESOPOROUS MATERIALS 被引量:2
12
作者 Yen Wei Kun-yuan Qiu Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, USA Department of Polymer Science and Engineering, Peking University, Beijing 100871, China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2000年第1期1-7,共7页
We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials ca... We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials can be tailored to have both good toughness and hardness while maintaining excellent optical transparency. Doping the sol-gel metal oxides with optically active compounds such as D-glucose results in new optical rotatory composite materials. Removal of the dopant compounds from the composites affords mesoporous oxide materials; which represents a new, nonsurfactant-templated route to mesoporous molecular sieves. We have successfully immobilized a series of enzymes and other bioactive agents in mesoporous materials. Catalytical activities of the enzyme encapsulated in mesoporous materials were found to be much higher than those encapsulated in microporous materials. 展开更多
关键词 vinyl polymer-inorganic hybrid materials mesoporous materials sol-gel process biotech-nological applications
下载PDF
Syntheses and Structures of Three Hybrid Materials Using Vanadium Polyoxoanions and Macrocyclic Copper Complex as Building Blocks 被引量:4
13
作者 欧光川 廖阳 +2 位作者 向岳峰 袁先友 李治章 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第1期135-142,共8页
The reactions of the four-coordinated macrocyclic copper complex [CuL](ClO4)2(L = 1,4,8,11-tetraazacyclotetradecane) with NH4VO3 under different conditions gave three inorganic-organic hybrid materials of [CuL][VO... The reactions of the four-coordinated macrocyclic copper complex [CuL](ClO4)2(L = 1,4,8,11-tetraazacyclotetradecane) with NH4VO3 under different conditions gave three inorganic-organic hybrid materials of [CuL][VO3]2·2.33H2O(1), [CuL]3[V(10)O(28)]·8H2O(2) and [Cu L]3[V6O(18)]·8H2O(3). Single-crystal X-ray diffraction analyses reveal that three diverse vanadium polyoxoanions, [V6O(18)]6- ring, [V(10)O(28)]6- cluster, and [V(12)O(35)]^10- ring, were isolated from the same reactant NH4VO3 under different conditions. The [CuL]^2+ bridges the [V10O28]6- clusters to form a two-dimensional sheet in 2, and link the [V6O(18)]^6- rings in 1 and [V(12)O(35)]^10- rings in 3 into three-dimensional frameworks, respectively. 展开更多
关键词 polyoxovanadate macrocyclic copper(Ⅱ) complexes hybrid materials
下载PDF
Syntheses,Structures and Electrochemical Investigation of a New Dawson-based Hybrid Material with Cd-BTA Coordination Polymers 被引量:1
14
作者 杨艳艳 曲小姝 +2 位作者 王新龙 张苗苗 刘树萍 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2015年第12期1889-1894,共6页
A new organic-inorganic hybrid based on tungstophosphate anions and benzotria- zole cations, [Na(BTA)E(H2O)2]2[{Cd(BTA)4(H2O)}2(P2W18O62)]·6H2O (1) (BTA = benzotriazole) has been synthesized in aque... A new organic-inorganic hybrid based on tungstophosphate anions and benzotria- zole cations, [Na(BTA)E(H2O)2]2[{Cd(BTA)4(H2O)}2(P2W18O62)]·6H2O (1) (BTA = benzotriazole) has been synthesized in aqueous solution and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis, and single-crystal X-ray diffraction. X-ray analysis showed that both {Na(BTA)2} and {Cd(BTA)4} units are supported on the a-Dawson polyoxoanion [P2W18062]6- via the surface bridging oxygen atoms. The electrochemical properties of 1 in aqueous solution are studied at room temperature. It was found that 1 presents good electrocatalytic activities for the reduction of NO2^-. 展开更多
关键词 polyoxomctalates inorganic-organic hybrid material TUNGSTOPHOSPHATE
下载PDF
Hybrid graded element model for transient heat conduction in functionally graded materials 被引量:4
15
作者 Lei-Lei Cao Qing-Hua Qin Ning Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期128-139,共12页
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f... This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method. 展开更多
关键词 Graded element model Functionally graded materials Hybrid FEM Transient heat conduction
下载PDF
Ball-milling MoS_2/carbon black hybrid material for catalyzing hydrogen evolution reaction in acidic medium 被引量:1
16
作者 Jiayuan Li Dunfeng Gao +3 位作者 Jing Wang Shu Miao Guoxiong Wang Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期608-613,共6页
Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium... Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium, The activity of as-prepared MoS2 had a strong dependence on the ball milling time, Furthermore, Ketjen Black EC 300J was added into the ball-milled MoS2 followed by a second ball milling, and the resultant MoS2/carbon black hybrid material showed a much higher HER activity than MoS2 and carbon black alone. The enhanced activity of the MoS2/carbon black hybrid material was attributed to the increased abundance of catalytic edge sites of MoS) and excellent electrical coupling to the underlving carbon network. 展开更多
关键词 Molybdenum disulfide Carbon black Hybrid material Ball milling Hydrogen evolution reaction Acidic medium
下载PDF
SYNTHESIS OF HYBRID MESOPOROUS POLYSTYRENE-SILICA MATERIALS WITH NON-SURFACTANT CITRIC ACID AS TEMPLATE VIA SOL-GEL PROCESS
17
作者 Jie Bai Jin-yu Zheng +1 位作者 Kun-yuan Qiu Yen Wei Department of Polymer Science & Engineering College of Chemistry & Molecular Engineering, Peking University Beijing 100871, China Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2002年第6期565-572,共8页
Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom tran... Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom transfer radical polymerization (ATRP) of styrene, in the presence of citric acid (CA) as non-surfactant template or pore-forming agent and followed by ethanol extraction to remove template molecules. The materials were characterized by infrared spectroscopy OR), N-2 adsorption-desorption measurements, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The results indicate that the materials prepared with 50 wt%-60 wt% template contents have average pore sizes of 2-3 nm and large surface areas (ca. 886 m(2)/g) as well as high pore volumes (ca. 0.53 cm(3)/g). The mesoporosity arises from interconnected channels and pores with disordered arrangements. The pore diameters and pore volumes increase as the template content is increased. The pore diameters show a little change upon heating at 200degreesC overnight. However, the materials do not have good hydrothermal stability. 展开更多
关键词 atom transfer radical polymerization hybrid material MESOPOROUS POLYSTYRENE SILICA
下载PDF
Synthesis and Characterization of Two New Photochromic Inorganic-organic Hybrid Materials Based on Keggin-type Polyoxometalates
18
作者 库宗军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第3期367-371,共5页
Two new photochromic inorganic-organic hybrid materials formed from Keggin-type polyoxometalates(POMs) and metronidazole (C6H9N3O3, MNZ), formulated as H3PMo12OaO-3MNZ·3H2O (1) and H3PW12O40.3MNZ·3H2O... Two new photochromic inorganic-organic hybrid materials formed from Keggin-type polyoxometalates(POMs) and metronidazole (C6H9N3O3, MNZ), formulated as H3PMo12OaO-3MNZ·3H2O (1) and H3PW12O40.3MNZ·3H2O(2), were synthesized and characterized by elemental analysis, IR spectra, electronic spectra, electron spin resonance (ESR) spectra and thermogravi-metry-differential thermal analysis (TG-DTA). Reflectance spectra show the presence of weak intermolecular charge transfer between the organic and inorganic moieties in the solid state. The photochromic properties were studied by solid diffuse reflectance spectra and ESR spectra, and the photochromic reactions were found to exhibit first-order kinetics. TG-DTA showed that two hybrid materials have similar thermal behavior. 展开更多
关键词 POLYOXOMETALATE METRONIDAZOLE hybrid material PHOTOCHROMISM kinetics
下载PDF
Hydrothermal synthesis and characterization of two novel inorganic-organic hybrid materials
19
作者 Zeng-he LI Hai-dan BAI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第1期143-148,共6页
By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. C... By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. Crystal data: 1. crystal system orthorhombic, space group Pnna, a=1 0.188(2) A, b=1 1.497(2) A, c=7.3975(15) A, V=866.5(3) A^3, Z=4, Dcalcd= 2.705 g/cm^3; 2. crystal system triclinic, space group P1^- (No. 2), a=8.3190(17) A, b=8.4764(17) A, c=1 1.183(2) A, a=95.48(3)°, β=92.03(3)°, γ=107.24(3)°,V=748.0(3) A^3, Z=2, Dcalcd= 1.958 g/cm^3. The framework of compound 1 contains both {Co(C4H4N2)} and infinite metavanadate chains. Crystal structure of compound 2 is constructed with inorganic {CoV2O6} layers across-linked by organic 1,2-bis(4-pyridyl) ethane ligands. The two compounds are thermally stable to approximately 410 ℃ and 350 ℃, respectively. Their optical band gaps are determined to be 2.13 eV and 2.12 eV by UV-VIS-NIR diffuse reflectance spectra, which revealed their nature of semiconductor and optical absorption features. 展开更多
关键词 Inorganic-organic hybrid materials Hydrothermal synthesis Crystal structure OXOVANADIUM
下载PDF
A new inorganic-organic hybrid material as consolidation material for Jinsha archaeological site of Chengdu
20
作者 万涛 林金辉 《Journal of Central South University》 SCIE EI CAS 2014年第2期487-492,共6页
An organic-inorganic epoxy-silica-acrylate(ESA) hybrid material was used for the consolidation of Jinsha archaeological site of Chengdu in China.The hybrid materials have multiple functional groups,such as anhydride,e... An organic-inorganic epoxy-silica-acrylate(ESA) hybrid material was used for the consolidation of Jinsha archaeological site of Chengdu in China.The hybrid materials have multiple functional groups,such as anhydride,epoxy,hydroxyl and carboxyl,which can form networks at room temperature and result in an enhanced chemical and water resistance of the consolidated soil.With increasing of TEOS content,the hybrid materials keep colorless with only some reduction of transparency,while the hybrid materials obviously turn from moderate yellowish to brown yellow with the increase of the epoxy resin(EOR) content after 120 min UV irradiation.SEM observation indicates that the hybrid soil consolidation materials can effectively penetrate into the soil substrate,fill up most of the pores,decrease the area porosity and consolidate the Jinsha archaeological soil.The consolidation performances are in the sequence:ESA > K2SiO4(PS) > tetraethyl orthosilicate(TEOS). 展开更多
关键词 hybrid materials earthen archaeological site SOL-GEL CONSOLIDATION
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部