In this study, a reactive distillation column in which chemical reaction and separation occur simultaneously is applied for the synthesis of tert-amyl ethyl ether (TAEE) from ethanol (EtOH) and tert-amyl alcohol ...In this study, a reactive distillation column in which chemical reaction and separation occur simultaneously is applied for the synthesis of tert-amyl ethyl ether (TAEE) from ethanol (EtOH) and tert-amyl alcohol (TAA). Pervaporation, an efficient membrane separation technique, is integrated with the reactive distillation for enhancing the efficiency of TAEE production. A user-defined Fortran subroutine of a pervaporation unit is developed, allowing the design and simulation of the hybrid process of reactive distillation and pervaporation in Aspen Plus simulator. The performance of such a hybrid process is analyzed and the results indicate that the integration of the reactive distillation with the pervaporation increases the conversion of TAA and the purity of TAEE product, compared with the conventional reactive distillation.展开更多
The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense ...The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples.展开更多
The extremely high peak intensity associated with ultrashort pulse width of femtosecond(fs)lasers enabled inducing nonlinear multiphoton absorption in materials that are transparent to the laser wavelength.More import...The extremely high peak intensity associated with ultrashort pulse width of femtosecond(fs)lasers enabled inducing nonlinear multiphoton absorption in materials that are transparent to the laser wavelength.More importantly,focusing the fs laser beam inside the transparent materials confined the nonlinear interaction to within the focal volume only,realizing three-dimensional(3D)micro/nanofabrication.This 3D capability offers three different processing schemes for use in fabrication:undeformative,subtractive,and additive.Furthermore,a hybrid approach of different schemes can create much more complex 3D structures and thereby promises to enhance the functionality of the structures created.Thus,hybrid fs laser 3D microprocessing opens a new door for material processing.This paper comprehensively reviews different types of hybrid fs laser 3D micro/nanoprocessing for diverse applications including fabrication of functional micro/nanodevices.展开更多
Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and ...Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and increase the sweep efficiency.In this paper,the methods of microscale visualized experiment and macroscale 3D experiment are applied to systematically evaluate the areal and vertical sweep efficiencies of different hybrid steam-chemical processes.First,a series of static tests are performed to evaluate the effect of different additives on heavy oil properties.Then,by a series of tests on the microscale visualized model,the areal sweep efficiencies of a baseline steam flooding process and different follow-up hybrid EOR processes are obtained from the collected 2D images.Specifically,they include the hybrid steam-N_(2)process,hybrid steam-N2/foam process,hybrid steam-surfactant process and hybrid steam-N2/foam/surfactant process(N2/foam slug first and steam-surfactant co-injection then).From the results of static tests and visualized micromodels,the pore scale EOR mechanisms and the difference between them can be discussed.For the vertical sweep efficiencies,a macroscale 3D experiment of steam flooding process and a follow-up hybrid EOR process is conducted.Thereafter,combing the macroscale 3D experiment and laboratory-scaled numerical simulation,the vertical and overall sweep efficiencies of different hybrid steam-chemical processes are evaluated.Results indicate that compared with a steam flooding process,the areal sweep efficiency of a hybrid steam-N2process is lower.It is caused by the high mobility ratio in a steam-N2-heavy oil system.By contrast,the enhancement of sweep efficiency by a hybrid steam-N2/foam/surfactant process is the highest.It is because of the high resistance capacity of NCG foam system and the performance of surfactant.Specifically,a surfactant can interact with the oil film in chief zone and reduce the interfacial energy,and thus the oil droplets/films formed during steam injection stage are unlocked.For NCG foam,it can plug the chief steam flow zone and thus the subsequent injected steam is re-directed.Simultaneously,from the collected 2D images,it is also observed that the reservoir microscopic heterogeneity can have an important effect on their sweep efficiencies.From the 3D experiment and laboratory-scaled numerical simulation,it is found that a N2/foam slug can increase the thermal front angle by about 150 and increase the vertical sweep efficiency by about 26%.Among the four processes,a multiple hybrid EOR process(steam-N2/foam/surfactant process) is recommended than the other ones.This paper provides a novel method to systematically evaluate the sweep efficiency of hybrid steam-chemical process and some new insights on the mechanisms of sweep efficiency enhancement are also addressed.It can benefit the expansion of hybrid steam-chemical processes in the post steamed heavy oil reservoirs.展开更多
Micro-gear is an important actuating component used widely in the micro electro mechanical systems(MEMS) devices.The technologies of micro-forming and precision assembly are urgently developed to manufacture the micro...Micro-gear is an important actuating component used widely in the micro electro mechanical systems(MEMS) devices.The technologies of micro-forming and precision assembly are urgently developed to manufacture the micro-double gear with central shaft.In the paper,a novel hy-brid-forming process with two kinds of piercing method have been proposed to manufacture the micro-double gear using micro forming technology.The tests of hybrid forming process were carried out with two steps and the micro-double gear was successfully manufactured with good surface quality.The results also show that the hybrid micro-forming process with central piercing method can improve the defects of inclining shaft generated by double-ended piercing method.The quality evaluation of micro-double gear was conducted with surface roughness,micro-hardness and impact tests.The results show that the micro-double gear with good mechanical properties can meet the requirements of application for milli-machines.展开更多
Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several st...Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several studies have been conducted in model systems, while experiments with rocks and reservoir fluids are scarce. This study presents a core-flooding experiment of LSW injection, with and without surfactant, using the core and heavy oil samples obtained from a sandstone reservoir in southeastern Mexico. The effluents and the crude oil obtained at each stage were analyzed. The study was complemented by tomographic analysis. The results revealed that LSW injection and hybrid process with surfactants obtained an increase of 11.4 percentage points in recovery factor. Various phenomena were caused by LSW flooding, such as changes in wettability and pH, ion exchange, mineral dissolution, detachment of fines and modification of the hydrocarbon profile. In the surfactant flooding, the reduction of interfacial tension and alteration of wettability were the main mechanisms involved. The findings of this work also showed that the conditions believed to be necessary for enhanced oil recovery with LSW, such as the presence of kaolinite or high acid number oil, are not relevant.展开更多
In this work it is assessed the potential of combining conventional and incremental sheet forming processes in a same sheet of metal.This so-called hybrid forming approach is performed through the manufacture of a pre...In this work it is assessed the potential of combining conventional and incremental sheet forming processes in a same sheet of metal.This so-called hybrid forming approach is performed through the manufacture of a pre-forming by conventional forming,followed by incremental sheet forming.The main objective is analyzing strain evolution.The pre-forming induced in the conventional forming stage will determine the strain paths,directly influencing the strains produced by the incremental process.To conduct the study,in the conventional processes,strains were imposed in three different ways with distinct true strains.At the incremental stage,the pyramid strategy was adopted with different wall slopes.From the experiments,the true strains and the final geometries were analyzed.Numerical simulation was also employed for the sake of comparison and correlation with the measured data.It could be observed that single-stretch pre-strain was directly proportional to the maximum incremental strains achieved,whereas samples subjected to biaxial pre-strain influenced the formability according to the degree of pre-strain applied.Pre-strain driven by the prior deep-drawing operation did not result,in this particular geometry,in increased formability.展开更多
Kinetics models of COD degradation,biomass growth of the anoxic-oxic ( A/O) system as well as NH3-N degradation in aerobic phase were presented according to the mass balance theory,reaction-diffusion theory and Fick l...Kinetics models of COD degradation,biomass growth of the anoxic-oxic ( A/O) system as well as NH3-N degradation in aerobic phase were presented according to the mass balance theory,reaction-diffusion theory and Fick law. Then these models were testified by comparson with experimental results. It is demonstrated that the variation trends of theoretical and experimental values for COD degradation and biomass growth are similar. The deviation rate between theoretical and experimental values is always under 20% even it increases along with the fluctuation of influent organic loading. In terms of NH3-N degradation,nitrification can also be well simulated by the model as the substrates of influent are sufficient. It indicates that the model can accurately reflect the reaction in hybrid A/O process. Models presented herein provide a theoretical basis for the design, operation and control of hybrid A/O process.展开更多
The Mixed Refrigerant(MR)component is an important factor influencing the performances of natural gas lique-faction processes.However,there is a lack of systematic research about the utilization of propane pre-cooled(...The Mixed Refrigerant(MR)component is an important factor influencing the performances of natural gas lique-faction processes.However,there is a lack of systematic research about the utilization of propane pre-cooled(C3/MRC).In this paper,this mixed refrigerant cycle liquefaction process is simulated using the HYSYS software and the main influential parameters involved in the process are varied to analyze their influence on the liquefaction rate and power consumption.The results show that an effective way for lowering the power consumption of the compressor consists of reducing the flow through the compressor through optimization of the percentage of mixed refrigerant.The power consumption of the compressor in the hybrid refrigeration process is affected by both flow and pressure ratios.Its specific power consumption can be reduced by increasing the flow and decreasing the pressure ratio at the same time.The increase in refrigerant pressure at the high-pressure end can significantly mitigate the energy loss of the heat exchanger and compressor.展开更多
Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the comple...Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the completion time,thus improving the loading and unloading efficiencies of automated container terminals.The proposed model integrated the two loading and unloading processes of“double-trolley quay crane+AGV+ARMG”and“single-trolley quay crane+container truck+ARMG”and then designed the simulated annealing particle swarm algorithm to solve the model.By comparing the results of the particle swarm algorithm and genetic algorithm,the algorithm designed in this paper could effectively improve the global and local space search capability of finding the optimal solution.Furthermore,the results showed that the proposed method of collaborative scheduling of multiple equipment resources in automated terminals considering hybrid processes effectively improved the loading and unloading efficiencies of automated container terminals.The findings of this study provide a reference for the improvement of loading and unloading processes as well as coordinated scheduling in automated terminals.展开更多
Existing computer-aided process planning (CAPP) systems for garment manufacturing emphasize all-purpose ones, lack specialism and availability. So, few developed is popular in the garment industries. This study is i...Existing computer-aided process planning (CAPP) systems for garment manufacturing emphasize all-purpose ones, lack specialism and availability. So, few developed is popular in the garment industries. This study is intended for developing a CAPP system, which aims at the actual condition of process planning in the small and medium size apparel enterprises (SMAs). It enables the technologists of process planning to be quicker in generating suitable plans that are similar to existing styles or new. It also automatically provides labor cost by considering the shop-ricer caztiticns. Process planning is achieved by adopting the Hybrid Interactive-variant process planning mete. The proposed system has been realized in Borland Delphi 7 and Orade 8. For validation of the system, the software has been implemented successfully in a firm named Jingchen in China.展开更多
Ternary europium complex with dibenzoylmethane(DBM)and 1,10phenanthroline(phen)was insitu synthesized in thin SiO2/polyvinyl butyral(PVB)hybrid films by a twostep solgel process and characterized by means of fluoresce...Ternary europium complex with dibenzoylmethane(DBM)and 1,10phenanthroline(phen)was insitu synthesized in thin SiO2/polyvinyl butyral(PVB)hybrid films by a twostep solgel process and characterized by means of fluorescence spectroscopy.The luminescence spectra,fluorescence lifetimes and photostability were all investigated.The results showed that the hybrid films exhibited the characteristic emission bands of the central rare earth Eu3+.In addition,Eu3+presented longer fluorescence lifetime than in an ethanol solution and the complex had a higher photostability in the hybrid film than in the PVB film containing the corresponding pure complex.展开更多
Broadly speaking, this study aims to develop "batik" dyes wastewater treatment technologies by hybrid process that combines Fenton oxidation and separation using ultrafiltration membranes. Specifically, the purpose ...Broadly speaking, this study aims to develop "batik" dyes wastewater treatment technologies by hybrid process that combines Fenton oxidation and separation using ultrafiltration membranes. Specifically, the purpose of this study was to determine the effect of membrane characteristics, feed solution pH, operating pressure of "Dead-end" membrane reactor, and the frequency of membranes which uses on the percentage of COD reduction in "batik" wastewater. In this study, the filtrate from wastewater pre-treatment with Fenton oxidation, both without and with addition of activated carbon, is passed to the ultrafiltration (UF) separation system. Fenton oxidation process was carried out at optimum conditions, i.e. at pH 3, temperature 50 ℃, and the addition FeSO4·7H2O and H2O2 at 747-830 mg/L and 1,168-1,460 mg/L, respectively. The optimum reduction percentage of COD can be achieved when the membranes used for separation has a pore size of 0.01 to 0.015 lam, feed solution pH 2, operating pressure 1 atm and frequency of membranes uses I x. To determine the fouling potential on ultrafiltration membranes that are used, flux measurements were performed 3 times for each membrane. These stages can see that the flux decline reached 22.5% when the effluent filtered directly to the membrane; 17.3% when performed pre-treatment prior to separation processes using membranes and 10% when combined pre-treatment process, use of activated carbon and the separation using ultrafiltration membranes.展开更多
Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly ...Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.展开更多
Membrane distillation crystallization (MDC) is a promising hybrid separation process that has been applied to seawater desalination, brine treatment and wastewater recovery. In recent years, great progress has been ...Membrane distillation crystallization (MDC) is a promising hybrid separation process that has been applied to seawater desalination, brine treatment and wastewater recovery. In recent years, great progress has been made in MDC technologies including the promotion of nucleation and better control of crystallization and crystal size distribution. These advances are useful for the accurate control of the degree of supersaturation and for the control of the nucleation kinetic processes. This review focuses on the development of MDC process models and on crystallization control strategies. In addition, the most important innovative applications of MDC in the last five years in crystal engineering and pharmaceutical manufac- turing are summarized.展开更多
Hydrogen was recovered and purified from coal gasification-produced syngas using two kinds of hybrid processes: a pressure swing adsorption (PSA)- membrane system (a PSA unit followed by a membrane separation unit...Hydrogen was recovered and purified from coal gasification-produced syngas using two kinds of hybrid processes: a pressure swing adsorption (PSA)- membrane system (a PSA unit followed by a membrane separation unit) and a membrane-PSA system (a mem- brane separation unit followed by a PSA unit). The PSA operational parameters were adjusted to control the product purity and the membrane operational parameters were adjusted to control the hydrogen recovery so that both a pure hydrogen product ( 〉 99.9%) and a high recovery (〉 90%) were obtained simultaneously. The hybrid hydrogen purification processes were simulated using HYSYS and the processes were evaluated in terms of hydrogen product purity and hydrogen recovery. For comparison, a PSA process and a membrane separation process were also used individually for hydrogen purifica- tion. Neither process alone produced high purity hydrogen with a high recovery. The PSA-membrane hybrid process produced hydrogen that was 99.98% pure with a recovery of 91.71%, whereas the membrane-PSA hybrid process produced hydrogen that was 99.99% pure with a recovery of 91.71%. The PSA-membrane hybrid process achieved higher total H2 recoveries than the membrane-PSA hybrid process under the same H2 recovery of membrane separation unit. Meanwhile, the membrane-PSA hybrid process achieved a higher total H2 recovery (97.06%) than PSA-membrane hybrid process (94.35%) at the same H2 concentration of PSA feed gas (62.57%).展开更多
Particles and natural organic matter (NOM) are two major concerns in surface water, which greatly influence the membrane filtration process. The objective of this article is to investigate the efiect of particles, N...Particles and natural organic matter (NOM) are two major concerns in surface water, which greatly influence the membrane filtration process. The objective of this article is to investigate the efiect of particles, NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF. Particles, NOM and their mixture were spiked in tap water to simulate raw water. Exponential relationship, (JP/JP0 = a×exp{-k[t-(n-1)T]}), was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well. In this equation, coefficient a was determined by the value of JP/JP0 at the beginning of a filtration cycle, refiecting the flux recovery after backwashing, that is, the irreversible fouling. The coefficient k refiected the trend of flux dynamics. Integrated total permeability (ΣJP) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios. According to the results, there was an additive effect on membrane flux by NOM and particles during solo UF process. This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant, which further delayed the decrease of membrane flux and benefited flux recovery by backwashing. The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing.展开更多
Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid p...Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively.展开更多
The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–sol...The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas.Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB(hydroxyl-terminated polybutadiene) hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.展开更多
The global trends towards improving fuel efficiency and reducing CO;emissions are the key drivers for lightweight solutions. In sheet metal processing, this can be achieved by the use of materials with a supreme stren...The global trends towards improving fuel efficiency and reducing CO;emissions are the key drivers for lightweight solutions. In sheet metal processing, this can be achieved by the use of materials with a supreme strength-toweight and stiffness-to-weight ratio. Besides monolithic materials such as high-strength or light metals, in particular metal–plastic composite sheets are able to provide outstanding mechanical properties. Thus, the adaption of conventional, wellestablished forming methods for the processing of hybrid sheet metals is a current challenge for the sheet metal working industry. In this work, the planning phase for a conventional sheet metal forming process is studied aiming at the forming of metal–plastic composite sheets. The single process steps like material characterization, FE analysis, tool design and development of robust process parameters are studied in detail and adapted to the specific properties of metal–plastic composites. In material characterization, the model of the hybrid laminate needs to represent not only the mechanical properties of the individual combined materials, but also needs to reflect the behaviour of the interface zone between them.Based on experience, there is a strong dependency on temperature as well as strain rate. While monolithic materials show a moderate anisotropic behaviour, loads on laminates in different directions generate different strain states and completely different failure modes. During the FE analysis, thermo-mechanic and thermo-dynamic effects influence the temperature distribution within tool and work pieces and subsequently the forming behaviour. During try out and production phase,those additional influencing factors are limiting the process window even more and therefore need to be considered for the design of a robust forming process. A roadmap for sheet metal forming adjusted to metal–plastic composites is presented in this paper.展开更多
文摘In this study, a reactive distillation column in which chemical reaction and separation occur simultaneously is applied for the synthesis of tert-amyl ethyl ether (TAEE) from ethanol (EtOH) and tert-amyl alcohol (TAA). Pervaporation, an efficient membrane separation technique, is integrated with the reactive distillation for enhancing the efficiency of TAEE production. A user-defined Fortran subroutine of a pervaporation unit is developed, allowing the design and simulation of the hybrid process of reactive distillation and pervaporation in Aspen Plus simulator. The performance of such a hybrid process is analyzed and the results indicate that the integration of the reactive distillation with the pervaporation increases the conversion of TAA and the purity of TAEE product, compared with the conventional reactive distillation.
基金supported by the National Natural Science Foundation of China (61903025)the Fundamental Research Funds for the Cent ral Universities (FRF-IDRY-20-013)。
文摘The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples.
文摘The extremely high peak intensity associated with ultrashort pulse width of femtosecond(fs)lasers enabled inducing nonlinear multiphoton absorption in materials that are transparent to the laser wavelength.More importantly,focusing the fs laser beam inside the transparent materials confined the nonlinear interaction to within the focal volume only,realizing three-dimensional(3D)micro/nanofabrication.This 3D capability offers three different processing schemes for use in fabrication:undeformative,subtractive,and additive.Furthermore,a hybrid approach of different schemes can create much more complex 3D structures and thereby promises to enhance the functionality of the structures created.Thus,hybrid fs laser 3D microprocessing opens a new door for material processing.This paper comprehensively reviews different types of hybrid fs laser 3D micro/nanoprocessing for diverse applications including fabrication of functional micro/nanodevices.
基金financially supported by the National Natural Science Foundation of China(U20B6003,52004303)Beijing Natural Science Foundation(3212020)
文摘Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and increase the sweep efficiency.In this paper,the methods of microscale visualized experiment and macroscale 3D experiment are applied to systematically evaluate the areal and vertical sweep efficiencies of different hybrid steam-chemical processes.First,a series of static tests are performed to evaluate the effect of different additives on heavy oil properties.Then,by a series of tests on the microscale visualized model,the areal sweep efficiencies of a baseline steam flooding process and different follow-up hybrid EOR processes are obtained from the collected 2D images.Specifically,they include the hybrid steam-N_(2)process,hybrid steam-N2/foam process,hybrid steam-surfactant process and hybrid steam-N2/foam/surfactant process(N2/foam slug first and steam-surfactant co-injection then).From the results of static tests and visualized micromodels,the pore scale EOR mechanisms and the difference between them can be discussed.For the vertical sweep efficiencies,a macroscale 3D experiment of steam flooding process and a follow-up hybrid EOR process is conducted.Thereafter,combing the macroscale 3D experiment and laboratory-scaled numerical simulation,the vertical and overall sweep efficiencies of different hybrid steam-chemical processes are evaluated.Results indicate that compared with a steam flooding process,the areal sweep efficiency of a hybrid steam-N2process is lower.It is caused by the high mobility ratio in a steam-N2-heavy oil system.By contrast,the enhancement of sweep efficiency by a hybrid steam-N2/foam/surfactant process is the highest.It is because of the high resistance capacity of NCG foam system and the performance of surfactant.Specifically,a surfactant can interact with the oil film in chief zone and reduce the interfacial energy,and thus the oil droplets/films formed during steam injection stage are unlocked.For NCG foam,it can plug the chief steam flow zone and thus the subsequent injected steam is re-directed.Simultaneously,from the collected 2D images,it is also observed that the reservoir microscopic heterogeneity can have an important effect on their sweep efficiencies.From the 3D experiment and laboratory-scaled numerical simulation,it is found that a N2/foam slug can increase the thermal front angle by about 150 and increase the vertical sweep efficiency by about 26%.Among the four processes,a multiple hybrid EOR process(steam-N2/foam/surfactant process) is recommended than the other ones.This paper provides a novel method to systematically evaluate the sweep efficiency of hybrid steam-chemical process and some new insights on the mechanisms of sweep efficiency enhancement are also addressed.It can benefit the expansion of hybrid steam-chemical processes in the post steamed heavy oil reservoirs.
基金Funded by the Technology Research and Development Program of China (2006AA04Z331)Young Scholars of Heilongjiang Province (JC-05-11 and JC-06-07)
文摘Micro-gear is an important actuating component used widely in the micro electro mechanical systems(MEMS) devices.The technologies of micro-forming and precision assembly are urgently developed to manufacture the micro-double gear with central shaft.In the paper,a novel hy-brid-forming process with two kinds of piercing method have been proposed to manufacture the micro-double gear using micro forming technology.The tests of hybrid forming process were carried out with two steps and the micro-double gear was successfully manufactured with good surface quality.The results also show that the hybrid micro-forming process with central piercing method can improve the defects of inclining shaft generated by double-ended piercing method.The quality evaluation of micro-double gear was conducted with surface roughness,micro-hardness and impact tests.The results show that the micro-double gear with good mechanical properties can meet the requirements of application for milli-machines.
文摘Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several studies have been conducted in model systems, while experiments with rocks and reservoir fluids are scarce. This study presents a core-flooding experiment of LSW injection, with and without surfactant, using the core and heavy oil samples obtained from a sandstone reservoir in southeastern Mexico. The effluents and the crude oil obtained at each stage were analyzed. The study was complemented by tomographic analysis. The results revealed that LSW injection and hybrid process with surfactants obtained an increase of 11.4 percentage points in recovery factor. Various phenomena were caused by LSW flooding, such as changes in wettability and pH, ion exchange, mineral dissolution, detachment of fines and modification of the hydrocarbon profile. In the surfactant flooding, the reduction of interfacial tension and alteration of wettability were the main mechanisms involved. The findings of this work also showed that the conditions believed to be necessary for enhanced oil recovery with LSW, such as the presence of kaolinite or high acid number oil, are not relevant.
基金Fabio Lora gratefully acknowledge LdTM/UFRGS,SENAI CIMATEC and IBF/RWTH-Aachen for their support during the development of this workas well as CAPES for financial support in the form of a scholarship+3 种基金Daniel Fritzen acknowledges CNPq 234851/2014-7(Doutorado Sanduíche no Exterior)-SWERicardo J.Alves de Sousa acknowledges grants UID/EMS/00481/2019-FCT and CENTRO-01-0145-FEDER-022083-Centro2020European Regional Development Fund(ERDF)This research was support by CNPq/DAAD 2010-Doutorado no Exterior-GDE Grant Number 290096/2010-3 in the form of a scholarship.
文摘In this work it is assessed the potential of combining conventional and incremental sheet forming processes in a same sheet of metal.This so-called hybrid forming approach is performed through the manufacture of a pre-forming by conventional forming,followed by incremental sheet forming.The main objective is analyzing strain evolution.The pre-forming induced in the conventional forming stage will determine the strain paths,directly influencing the strains produced by the incremental process.To conduct the study,in the conventional processes,strains were imposed in three different ways with distinct true strains.At the incremental stage,the pyramid strategy was adopted with different wall slopes.From the experiments,the true strains and the final geometries were analyzed.Numerical simulation was also employed for the sake of comparison and correlation with the measured data.It could be observed that single-stretch pre-strain was directly proportional to the maximum incremental strains achieved,whereas samples subjected to biaxial pre-strain influenced the formability according to the degree of pre-strain applied.Pre-strain driven by the prior deep-drawing operation did not result,in this particular geometry,in increased formability.
基金Sponsored by the National Water Plan (2008ZX07207-005-03)
文摘Kinetics models of COD degradation,biomass growth of the anoxic-oxic ( A/O) system as well as NH3-N degradation in aerobic phase were presented according to the mass balance theory,reaction-diffusion theory and Fick law. Then these models were testified by comparson with experimental results. It is demonstrated that the variation trends of theoretical and experimental values for COD degradation and biomass growth are similar. The deviation rate between theoretical and experimental values is always under 20% even it increases along with the fluctuation of influent organic loading. In terms of NH3-N degradation,nitrification can also be well simulated by the model as the substrates of influent are sufficient. It indicates that the model can accurately reflect the reaction in hybrid A/O process. Models presented herein provide a theoretical basis for the design, operation and control of hybrid A/O process.
基金supported by the Science Development Funding Program of Dongying of China(Grant No.DJ2021006)Science Development Funding Program of Dongying of China(Grant No.DJ2021008).
文摘The Mixed Refrigerant(MR)component is an important factor influencing the performances of natural gas lique-faction processes.However,there is a lack of systematic research about the utilization of propane pre-cooled(C3/MRC).In this paper,this mixed refrigerant cycle liquefaction process is simulated using the HYSYS software and the main influential parameters involved in the process are varied to analyze their influence on the liquefaction rate and power consumption.The results show that an effective way for lowering the power consumption of the compressor consists of reducing the flow through the compressor through optimization of the percentage of mixed refrigerant.The power consumption of the compressor in the hybrid refrigeration process is affected by both flow and pressure ratios.Its specific power consumption can be reduced by increasing the flow and decreasing the pressure ratio at the same time.The increase in refrigerant pressure at the high-pressure end can significantly mitigate the energy loss of the heat exchanger and compressor.
基金supported by the National Key R&D Program of China(Grant No.2017YFC0805309)Natural Science Foundation of Fujian Province(Grant No.2021J01820)Department of Education of Fujian Province Project(Grant Nos.JAT190294 and JAT210230).
文摘Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the completion time,thus improving the loading and unloading efficiencies of automated container terminals.The proposed model integrated the two loading and unloading processes of“double-trolley quay crane+AGV+ARMG”and“single-trolley quay crane+container truck+ARMG”and then designed the simulated annealing particle swarm algorithm to solve the model.By comparing the results of the particle swarm algorithm and genetic algorithm,the algorithm designed in this paper could effectively improve the global and local space search capability of finding the optimal solution.Furthermore,the results showed that the proposed method of collaborative scheduling of multiple equipment resources in automated terminals considering hybrid processes effectively improved the loading and unloading efficiencies of automated container terminals.The findings of this study provide a reference for the improvement of loading and unloading processes as well as coordinated scheduling in automated terminals.
文摘Existing computer-aided process planning (CAPP) systems for garment manufacturing emphasize all-purpose ones, lack specialism and availability. So, few developed is popular in the garment industries. This study is intended for developing a CAPP system, which aims at the actual condition of process planning in the small and medium size apparel enterprises (SMAs). It enables the technologists of process planning to be quicker in generating suitable plans that are similar to existing styles or new. It also automatically provides labor cost by considering the shop-ricer caztiticns. Process planning is achieved by adopting the Hybrid Interactive-variant process planning mete. The proposed system has been realized in Borland Delphi 7 and Orade 8. For validation of the system, the software has been implemented successfully in a firm named Jingchen in China.
文摘Ternary europium complex with dibenzoylmethane(DBM)and 1,10phenanthroline(phen)was insitu synthesized in thin SiO2/polyvinyl butyral(PVB)hybrid films by a twostep solgel process and characterized by means of fluorescence spectroscopy.The luminescence spectra,fluorescence lifetimes and photostability were all investigated.The results showed that the hybrid films exhibited the characteristic emission bands of the central rare earth Eu3+.In addition,Eu3+presented longer fluorescence lifetime than in an ethanol solution and the complex had a higher photostability in the hybrid film than in the PVB film containing the corresponding pure complex.
文摘Broadly speaking, this study aims to develop "batik" dyes wastewater treatment technologies by hybrid process that combines Fenton oxidation and separation using ultrafiltration membranes. Specifically, the purpose of this study was to determine the effect of membrane characteristics, feed solution pH, operating pressure of "Dead-end" membrane reactor, and the frequency of membranes which uses on the percentage of COD reduction in "batik" wastewater. In this study, the filtrate from wastewater pre-treatment with Fenton oxidation, both without and with addition of activated carbon, is passed to the ultrafiltration (UF) separation system. Fenton oxidation process was carried out at optimum conditions, i.e. at pH 3, temperature 50 ℃, and the addition FeSO4·7H2O and H2O2 at 747-830 mg/L and 1,168-1,460 mg/L, respectively. The optimum reduction percentage of COD can be achieved when the membranes used for separation has a pore size of 0.01 to 0.015 lam, feed solution pH 2, operating pressure 1 atm and frequency of membranes uses I x. To determine the fouling potential on ultrafiltration membranes that are used, flux measurements were performed 3 times for each membrane. These stages can see that the flux decline reached 22.5% when the effluent filtered directly to the membrane; 17.3% when performed pre-treatment prior to separation processes using membranes and 10% when combined pre-treatment process, use of activated carbon and the separation using ultrafiltration membranes.
文摘Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.
文摘Membrane distillation crystallization (MDC) is a promising hybrid separation process that has been applied to seawater desalination, brine treatment and wastewater recovery. In recent years, great progress has been made in MDC technologies including the promotion of nucleation and better control of crystallization and crystal size distribution. These advances are useful for the accurate control of the degree of supersaturation and for the control of the nucleation kinetic processes. This review focuses on the development of MDC process models and on crystallization control strategies. In addition, the most important innovative applications of MDC in the last five years in crystal engineering and pharmaceutical manufac- turing are summarized.
文摘Hydrogen was recovered and purified from coal gasification-produced syngas using two kinds of hybrid processes: a pressure swing adsorption (PSA)- membrane system (a PSA unit followed by a membrane separation unit) and a membrane-PSA system (a mem- brane separation unit followed by a PSA unit). The PSA operational parameters were adjusted to control the product purity and the membrane operational parameters were adjusted to control the hydrogen recovery so that both a pure hydrogen product ( 〉 99.9%) and a high recovery (〉 90%) were obtained simultaneously. The hybrid hydrogen purification processes were simulated using HYSYS and the processes were evaluated in terms of hydrogen product purity and hydrogen recovery. For comparison, a PSA process and a membrane separation process were also used individually for hydrogen purifica- tion. Neither process alone produced high purity hydrogen with a high recovery. The PSA-membrane hybrid process produced hydrogen that was 99.98% pure with a recovery of 91.71%, whereas the membrane-PSA hybrid process produced hydrogen that was 99.99% pure with a recovery of 91.71%. The PSA-membrane hybrid process achieved higher total H2 recoveries than the membrane-PSA hybrid process under the same H2 recovery of membrane separation unit. Meanwhile, the membrane-PSA hybrid process achieved a higher total H2 recovery (97.06%) than PSA-membrane hybrid process (94.35%) at the same H2 concentration of PSA feed gas (62.57%).
基金supported by the National Key Technology R&D Program in the 11th-Five Year Plan of China (No.2006BAD01B03)
文摘Particles and natural organic matter (NOM) are two major concerns in surface water, which greatly influence the membrane filtration process. The objective of this article is to investigate the efiect of particles, NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF. Particles, NOM and their mixture were spiked in tap water to simulate raw water. Exponential relationship, (JP/JP0 = a×exp{-k[t-(n-1)T]}), was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well. In this equation, coefficient a was determined by the value of JP/JP0 at the beginning of a filtration cycle, refiecting the flux recovery after backwashing, that is, the irreversible fouling. The coefficient k refiected the trend of flux dynamics. Integrated total permeability (ΣJP) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios. According to the results, there was an additive effect on membrane flux by NOM and particles during solo UF process. This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant, which further delayed the decrease of membrane flux and benefited flux recovery by backwashing. The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing.
基金supported by the National Grand Water Project(No.2008ZX07423-002)the National Natural Science Foundation of China(No.50978170)the Guangdong Provincial Funding(No.2012B030800001)
文摘Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively.
基金co-supported by the Innovation Foundation of Beihang University for Ph.D. Graduatesthe National Natural Science Foundation of China (No. 51206007)
文摘The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas.Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB(hydroxyl-terminated polybutadiene) hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.
基金the German Research Foundation (DFG)German Federation of Industrial Research Associations (AiF)the European Research Association for Sheet Metal Working (EFB)
文摘The global trends towards improving fuel efficiency and reducing CO;emissions are the key drivers for lightweight solutions. In sheet metal processing, this can be achieved by the use of materials with a supreme strength-toweight and stiffness-to-weight ratio. Besides monolithic materials such as high-strength or light metals, in particular metal–plastic composite sheets are able to provide outstanding mechanical properties. Thus, the adaption of conventional, wellestablished forming methods for the processing of hybrid sheet metals is a current challenge for the sheet metal working industry. In this work, the planning phase for a conventional sheet metal forming process is studied aiming at the forming of metal–plastic composite sheets. The single process steps like material characterization, FE analysis, tool design and development of robust process parameters are studied in detail and adapted to the specific properties of metal–plastic composites. In material characterization, the model of the hybrid laminate needs to represent not only the mechanical properties of the individual combined materials, but also needs to reflect the behaviour of the interface zone between them.Based on experience, there is a strong dependency on temperature as well as strain rate. While monolithic materials show a moderate anisotropic behaviour, loads on laminates in different directions generate different strain states and completely different failure modes. During the FE analysis, thermo-mechanic and thermo-dynamic effects influence the temperature distribution within tool and work pieces and subsequently the forming behaviour. During try out and production phase,those additional influencing factors are limiting the process window even more and therefore need to be considered for the design of a robust forming process. A roadmap for sheet metal forming adjusted to metal–plastic composites is presented in this paper.