The dynamics of a single population with non-overlapping generations can be described deterministically by a scalar difference equation in this study. A discrete-time Beverton- Holt stock recruitment model with Allee ...The dynamics of a single population with non-overlapping generations can be described deterministically by a scalar difference equation in this study. A discrete-time Beverton- Holt stock recruitment model with Allee effect, harvesting and hydra effect is proposed and studied. Model with strong Allee effect results from incorporating mate limitation in the Beverton-Holt model. We show that these simple models exhibit some interesting (and sometimes unexpected) phenomena such as the hydra effect, sudden collapses and essential extinction. Along with this, harvesting is a socio-economie issue to continue any system generation after generation. Different dynamical behaviors for these situations have been illustrated numerically also. The biological implications of our analytical and numerical findings are discussed critically.展开更多
文摘The dynamics of a single population with non-overlapping generations can be described deterministically by a scalar difference equation in this study. A discrete-time Beverton- Holt stock recruitment model with Allee effect, harvesting and hydra effect is proposed and studied. Model with strong Allee effect results from incorporating mate limitation in the Beverton-Holt model. We show that these simple models exhibit some interesting (and sometimes unexpected) phenomena such as the hydra effect, sudden collapses and essential extinction. Along with this, harvesting is a socio-economie issue to continue any system generation after generation. Different dynamical behaviors for these situations have been illustrated numerically also. The biological implications of our analytical and numerical findings are discussed critically.