The thermal stability of New Zealand culture rabbit muscle aldolase was investigated by differential scanning calorimetry in the water content range 0.23-3.70 g water per g protein.The experimental results showed that...The thermal stability of New Zealand culture rabbit muscle aldolase was investigated by differential scanning calorimetry in the water content range 0.23-3.70 g water per g protein.The experimental results showed that at water contents below 0.47g/g,an endothermic peak was observed and at water contents above 0.57g/g,an endothermic and an exothermic peak were both observed on DSC thermogram.Thermal denaturation result of the enzyme and the relationship between two transition temperatures and water contents were first reported in this paper.Up to now we have not seen any similar reports concerning the exothermic transition.展开更多
Using transient plane source technique, we measured THF hydrate thermal conductivity from 243 K to 263 K. The sample THF solution is over saturated in order to avoid the effect of ice. And also to avoid the effect of ...Using transient plane source technique, we measured THF hydrate thermal conductivity from 243 K to 263 K. The sample THF solution is over saturated in order to avoid the effect of ice. And also to avoid the effect of crystal anisotropy, the THF hydrate was crushed to measure. In the test temperature value increases with the temperature increasing.展开更多
The heat conduction and thermal conductivity for methane hydrate are simulated from equilibrium molecular dynamics. The thermal conductivity and temperature dependence trend agree well with the experimental results. T...The heat conduction and thermal conductivity for methane hydrate are simulated from equilibrium molecular dynamics. The thermal conductivity and temperature dependence trend agree well with the experimental results. The nonmonotonic temperature dependence is attributed to the phonon inelastic scattering at higher temperature and to the confinement of the optic phonon modes and low frequency phonons at low temperature. The thermal conductivity scales proportionally with the van der Waals interaction strength, The conversion of a crystal-like nature into an amorphous one oecurs at higher strength. Both the temperature dependence and interaction strength dependence are explained by phonon inelastic scattering.展开更多
The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the tempe...The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the temperature distribution and thermal stresses of the spread footing during the first seven days after concrete placement. The mechanical properties of early age concrete are calculated, which are further used in the FEM models. The possibilities of crack growth are estimated by the method of crack index. The crack indexes of quite a number of points are very close to the allowable limit of 1.0 during the last three days. It is also indicated that the influence of foundation ring on the thermal stresses of concrete can be neglected.展开更多
The thermal decomposition of 3Mg(OH)2·MgCl2·8H2O (318MHCH) nanowires synthesized from agglom- erated Mg(OH)2 microspheres was investigated. The influence of heating rate and temperature on the composit...The thermal decomposition of 3Mg(OH)2·MgCl2·8H2O (318MHCH) nanowires synthesized from agglom- erated Mg(OH)2 microspheres was investigated. The influence of heating rate and temperature on the composition and morphology of the products was investigated. Thermogravimetric-differential scan- ning calorimetry, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction showed that increasing the heating rate from I to 20 ℃/min promoted the escape of crystalline water from the 318MHCH nanowires. 318MHCH nanowires were dehydrated stepwise to 310MHCH porous nanowires from room temperature to 320℃, and then to MgO cubic nanoparticles from 420 to 700 ℃. The nanowires retained their one-dimensional morphology, until the phase changed to MgO. The immediate collapse of the one-dimensional structure was attributed to the presence of Mg-O/Cl chains.展开更多
基金Supported by National Natural Science Fundation of China
文摘The thermal stability of New Zealand culture rabbit muscle aldolase was investigated by differential scanning calorimetry in the water content range 0.23-3.70 g water per g protein.The experimental results showed that at water contents below 0.47g/g,an endothermic peak was observed and at water contents above 0.57g/g,an endothermic and an exothermic peak were both observed on DSC thermogram.Thermal denaturation result of the enzyme and the relationship between two transition temperatures and water contents were first reported in this paper.Up to now we have not seen any similar reports concerning the exothermic transition.
文摘Using transient plane source technique, we measured THF hydrate thermal conductivity from 243 K to 263 K. The sample THF solution is over saturated in order to avoid the effect of ice. And also to avoid the effect of crystal anisotropy, the THF hydrate was crushed to measure. In the test temperature value increases with the temperature increasing.
基金Supported by the National Natural Science Foundation of China under Grant Nos U1262112 and 51176205
文摘The heat conduction and thermal conductivity for methane hydrate are simulated from equilibrium molecular dynamics. The thermal conductivity and temperature dependence trend agree well with the experimental results. The nonmonotonic temperature dependence is attributed to the phonon inelastic scattering at higher temperature and to the confinement of the optic phonon modes and low frequency phonons at low temperature. The thermal conductivity scales proportionally with the van der Waals interaction strength, The conversion of a crystal-like nature into an amorphous one oecurs at higher strength. Both the temperature dependence and interaction strength dependence are explained by phonon inelastic scattering.
基金Supported by the National Natural Science Foundation of China(No.51379142)International Science and Technology Cooperation Program of China(No.2012DFA70490)Tianjin Municipal Natural Science Foundation(No.13JCQNJC06900)
文摘The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the temperature distribution and thermal stresses of the spread footing during the first seven days after concrete placement. The mechanical properties of early age concrete are calculated, which are further used in the FEM models. The possibilities of crack growth are estimated by the method of crack index. The crack indexes of quite a number of points are very close to the allowable limit of 1.0 during the last three days. It is also indicated that the influence of foundation ring on the thermal stresses of concrete can be neglected.
基金This study was supported by the National Natural Science Foundation of China (Nos. 51374138, 51174125, 51234003), National Science and Technology Support Plan of China (No. 2013BAC14B02), and Key Scientific and Technical Project con- cerned with coal-bearing resources in Shanxi province (No. MC2014-06).
文摘The thermal decomposition of 3Mg(OH)2·MgCl2·8H2O (318MHCH) nanowires synthesized from agglom- erated Mg(OH)2 microspheres was investigated. The influence of heating rate and temperature on the composition and morphology of the products was investigated. Thermogravimetric-differential scan- ning calorimetry, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction showed that increasing the heating rate from I to 20 ℃/min promoted the escape of crystalline water from the 318MHCH nanowires. 318MHCH nanowires were dehydrated stepwise to 310MHCH porous nanowires from room temperature to 320℃, and then to MgO cubic nanoparticles from 420 to 700 ℃. The nanowires retained their one-dimensional morphology, until the phase changed to MgO. The immediate collapse of the one-dimensional structure was attributed to the presence of Mg-O/Cl chains.