The paper discusses minimizing the effect of external mechanical vibration on hydraulic valves in different military hydraulic drive systems.The current research work presents an analysis of the potential to reduce vi...The paper discusses minimizing the effect of external mechanical vibration on hydraulic valves in different military hydraulic drive systems.The current research work presents an analysis of the potential to reduce vibration on the valve casing by installing a valve flexibly on a vibrating surface,i.e.,by introducing a material with known stiffness and damping characteristics between the valve casing and the vibrating surface-a steel spring package or special cushions made of elastomer material or of oilresistant rubber.The article also demonstrates that elastomer cushions placed inside the valve casingbetween the casing and the centering springs-can be used as a supplementary or alternative solution in the analyzed method for mitigating the transfer of vibrations.By using materials with appropriately selected elastic and dissipative properties,the effectiveness of vibro-isolation can be increased.The presented theoretical analyzes by linear and non-linear mathematical models have been verified experimentally.展开更多
Electro-hydraulic control valves are key hydraulic components for industrial applications and aerospace,which controls electro-hydraulic motion.With the development of automation,digital technology,and communication t...Electro-hydraulic control valves are key hydraulic components for industrial applications and aerospace,which controls electro-hydraulic motion.With the development of automation,digital technology,and communication technology,electro-hydraulic control valves are becoming more digital,integrated,and intelligent in order to meet the requirements of Industry 4.0.This paper reviews the state of the art development for electro-hydraulic control valves and their related technologies.This review paper considers three aspects of state acquisition through sensors or indirect acquisition technologies,control strategies along with digital controllers and novel valves,and online maintenance through data interaction and fault diagnosis.The main features and development trends of electro-hydraulic control valves oriented to Industry 4.0 are discussed.展开更多
The flow characteristics and cavitation effects of water passing throughsmall sharp-edged cylindrical orifices and valves of different shapes in water hydraulics areinvestigated. The test results using orifices with d...The flow characteristics and cavitation effects of water passing throughsmall sharp-edged cylindrical orifices and valves of different shapes in water hydraulics areinvestigated. The test results using orifices with different aspect ratios and different diametersshow that the flow coefficients in the case of non-cavitating flow are larger than that of flow inthe case of cavitation occurrence. The flow coefficients of flow with cavitation initially decreaseas Reynolds number increases and ultimately tend to be of constant values close to contractioncoefficient. Large aspect ratio has an effect of suppressing cavitation. The experimental resultsabout disc valves illustrate that the valves with sharp edge at large opening are less affected bycavitation than that at small opening. Throttle with triangle notch has better anti-cavitationability than that with square notch. The flowrate of the throttle with square notch is significantlyaffected by the flow direction or the flow passage shape.展开更多
The electro-hydraulic clutch control system controls the transferred torque of gear-shifting clutches in clutch-to-clutch transmissions. A nonlinear dynamic model of an electro-hydraulic clutch shift control system is...The electro-hydraulic clutch control system controls the transferred torque of gear-shifting clutches in clutch-to-clutch transmissions. A nonlinear dynamic model of an electro-hydraulic clutch shift control system is presented. The mechanical and fluid subsystems of all valves are investigated, including their interactions. Model validation of the electro-hydraulic valve system is performed by comparing the simulated and measured pressure curves. The dynamic characteristics of the electro-hydraulic clutch shift control system with different supply pressures and different fluid temperatures are simulated and evaluated. It is found that pipes which are often ignored between the electro-hydraulic valve system and the clutch piston,have strong influence on clutch piston chamber pressures. In order to satisfy the required time and reduce the fluctuation of the clutch piston chamber pressures,the orifices' diameters and valve structure are optimized.展开更多
As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed...As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed by traditional manufacturing processes,conventional hydraulic integrated valve blocks fail to satisfy the demands of a more compact channel layout and lower energy dissipation.Notably,the subjectivity in the arrangement of internal passages results in a time-consuming and labor-intensive process.This study employed additive manufacturing technology and the ant colony algorithm and B-spline curves for the meticulous design of internal passages within an aviation EHA valve block.The layout environment for the valve block passages was established,and path optimization was achieved using the ant colony algorithm,complemented by smoothing using B-spline curves.Three-dimensional modeling was performed using SolidWorks software,revealing a 10.03%reduction in volume for the optimized passages compared with the original passages.Computational fluid dynamics(CFD)simulations were performed using Fluent software,demonstrating that the algorithmically optimized passages effectively prevented the occurrence of vortices at right-angled locations,exhibited superior flow characteristics,and concurrently reduced pressure losses by 34.09%-36.36%.The small discrepancy between the experimental and simulation results validated the efficacy of the ant colony algorithm and B-spline curves in optimizing the passage design,offering a viable solution for channel design in additive manufacturing.展开更多
Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady...Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady, for Reynolds numbers greater than 43 000. The working fluid was water, and the structure of the valve was simplified as a two dimensional axisymmetric geometrical model. Flow field visualization was numerically achieved. The effects of inlet velocity, outlet pressure, opening size as well as poppet angle on cavitation intensity in the poppet valve were numerically investigated. Experimental flow visualization was conducted to capture cavitation images near the orifice in the poppet valve with 30° poppet angle using high speed video camera. The binary cavitating flow field distribution obtained from digital processing of the original cavitation image showed a good agreement with the numerical result.展开更多
Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems res...Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve.It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.展开更多
The structure and working principle of a hydraulic buffering valve for a power-shift transmission ZF-4WG308 were studied comprehensively, and a model of the hydraulic buffering valve was developed with AMESim. A bench...The structure and working principle of a hydraulic buffering valve for a power-shift transmission ZF-4WG308 were studied comprehensively, and a model of the hydraulic buffering valve was developed with AMESim. A bench test was conducted on a buffering valve for transmissions(ZF-4WG308) and the test results agree well with the simulated results. Further more, the influences of the key parameters of the valve on the buffering performance were also studied in details.展开更多
A new robust controller is proposed to regulate both flexural vibrations and rigid body motion of a hydraulically driven flexible arm. The controller combines backstepping control and sliding mode to arrive at a contr...A new robust controller is proposed to regulate both flexural vibrations and rigid body motion of a hydraulically driven flexible arm. The controller combines backstepping control and sliding mode to arrive at a controller capable of dealing with a nonlinear system with uncertainties. The sliding mode technique is used to achieve an asymptotic joint angle and vibration regulation in the presence of payload uncertainty by providing a virtual torque input at the joint while the backstepping technique is used to regulate the spool position of a hydraulic valve to provide the required torque. It is shown that there is no chatter in the hydraulic valve, which results in smoother operation of the system.展开更多
In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a ...In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a function of the external actuation system In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. Moreover, the numerical model of the working fluid is modified in order to account also for the non-Newtonian fluids. The effects of the shear rate on the shear stress are accounted for both by using experimental measurements and correlations available in literature, such as the Herschel-Bulkley model. The analysis determines the performance of the control directional valve under different operating conditions when using either Newtonian or non-Newtonian fluids. In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated.展开更多
The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor rece...The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments arc carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out.展开更多
Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound co...Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.展开更多
Because the hydraulic directional valve usually works in a bad working environment and is disturbed by multi-factor noise,the traditional single sensor monitoring technology is difficult to use for an accurate diagnos...Because the hydraulic directional valve usually works in a bad working environment and is disturbed by multi-factor noise,the traditional single sensor monitoring technology is difficult to use for an accurate diagnosis of it.Therefore,a fault diagnosis method based on multi-sensor information fusion is proposed in this paper to reduce the inaccuracy and uncertainty of traditional single sensor information diagnosis technology and to realize accurate monitoring for the location or diagnosis of early faults in such valves in noisy environments.Firstly,the statistical features of signals collected by the multi-sensor are extracted and the depth features are obtained by a convolutional neural network(CNN)to form a complete and stable multi-dimensional feature set.Secondly,to obtain a weighted multi-dimensional feature set,the multi-dimensional feature sets of similar sensors are combined,and the entropy weight method is used to weight these features to reduce the interference of insensitive features.Finally,the attention mechanism is introduced to improve the dual-channel CNN,which is used to adaptively fuse the weighted multi-dimensional feature sets of heterogeneous sensors,to flexibly select heterogeneous sensor information so as to achieve an accurate diagnosis.Experimental results show that the weighted multi-dimensional feature set obtained by the proposed method has a high fault-representation ability and low information redundancy.It can diagnose simultaneously internal wear faults of the hydraulic directional valve and electromagnetic faults of actuators that are difficult to diagnose by traditional methods.This proposed method can achieve high fault-diagnosis accuracy under severe working conditions.展开更多
In this paper, taking two degrees of freedom on the armature–flapper assembly into account, a seventh-order model is deduced and proposed for the dynamic response of a two-stage electro-hydraulic servo valve from non...In this paper, taking two degrees of freedom on the armature–flapper assembly into account, a seventh-order model is deduced and proposed for the dynamic response of a two-stage electro-hydraulic servo valve from nonlinear equations. These deductions are based on fundamental laws of electromagnetism, fluid, and general mechanics. The coefficients of the proposed seventhorder model are derived in terms of servo valve physical parameters and fluid properties explicitly.For validating the results of the proposed model, an AMESim simulation model based on physical laws and the existing low-order models validated by other researchers through experiments are used to compare with the seventh-order model. The results show that the seventh-order model can reflect the physical behavior of the servo valve more explicitly than the existing low-order models and it could provide guidance more easily for a linear control design approach and sensitivity analysis than the AMESim simulation model.展开更多
The finite element method of computational fluid dynamics was applied to simulate the internal flow field in hydraulic spool valve which is one of the most important components in hydraulic technique. The formation of...The finite element method of computational fluid dynamics was applied to simulate the internal flow field in hydraulic spool valve which is one of the most important components in hydraulic technique. The formation of the vortexes with time was investigated under two different flow conditions. Two kinds of flow descriptions including streamline patterns and velocity vector plots were given to show the flow field inside the spool valve clearly, which is of theoretical significance and of practical values to analyze energy loss and fluid noise in the valve and to optimize the intermal flow structure of the valve.展开更多
A direct drive actuator (DDA) with direct drive valves (DDVs) as the control device is an ideal solution for a flight actuation system. This paper presents a novel triple-redundant voice coil motor (TRVCM) used ...A direct drive actuator (DDA) with direct drive valves (DDVs) as the control device is an ideal solution for a flight actuation system. This paper presents a novel triple-redundant voice coil motor (TRVCM) used for redundant DDVs. The TRVCM features electrical/mechanical hybrid triple-redundancy by securing three stators along with three moving coils in the same frame. A permanent magnet (PM) Halbach array is employed in each redundant VCM to simplify the system structure. A back-to-back design between neighborly redundancies is adopted to decouple the magnetic flux linkage. The particle swarm optimization (PSO) method is implemented to optimize design parameters based on the analytical magnetic circuit model. The optimization objective function is defined as the acceleration capacity of the motor to achieve high dynamic performance. The optimal geometric parameters are verified with 3D magnetic field finite element analysis (FEA). A research prototype has been developed for experimental purpose. The experimental results of magnetic field density and force output show that the proposed TRVCM has great potential of applications in DDA systems.展开更多
文摘The paper discusses minimizing the effect of external mechanical vibration on hydraulic valves in different military hydraulic drive systems.The current research work presents an analysis of the potential to reduce vibration on the valve casing by installing a valve flexibly on a vibrating surface,i.e.,by introducing a material with known stiffness and damping characteristics between the valve casing and the vibrating surface-a steel spring package or special cushions made of elastomer material or of oilresistant rubber.The article also demonstrates that elastomer cushions placed inside the valve casingbetween the casing and the centering springs-can be used as a supplementary or alternative solution in the analyzed method for mitigating the transfer of vibrations.By using materials with appropriately selected elastic and dissipative properties,the effectiveness of vibro-isolation can be increased.The presented theoretical analyzes by linear and non-linear mathematical models have been verified experimentally.
基金Supported by NSFC-Zhejiang Joint Fund(Grant No.U1509204)National Natural Science Foundation of China(Grant Nos.51835009,51922093).
文摘Electro-hydraulic control valves are key hydraulic components for industrial applications and aerospace,which controls electro-hydraulic motion.With the development of automation,digital technology,and communication technology,electro-hydraulic control valves are becoming more digital,integrated,and intelligent in order to meet the requirements of Industry 4.0.This paper reviews the state of the art development for electro-hydraulic control valves and their related technologies.This review paper considers three aspects of state acquisition through sensors or indirect acquisition technologies,control strategies along with digital controllers and novel valves,and online maintenance through data interaction and fault diagnosis.The main features and development trends of electro-hydraulic control valves oriented to Industry 4.0 are discussed.
基金This project is supported by National Natural Science Foundation of China(No.59975031).
文摘The flow characteristics and cavitation effects of water passing throughsmall sharp-edged cylindrical orifices and valves of different shapes in water hydraulics areinvestigated. The test results using orifices with different aspect ratios and different diametersshow that the flow coefficients in the case of non-cavitating flow are larger than that of flow inthe case of cavitation occurrence. The flow coefficients of flow with cavitation initially decreaseas Reynolds number increases and ultimately tend to be of constant values close to contractioncoefficient. Large aspect ratio has an effect of suppressing cavitation. The experimental resultsabout disc valves illustrate that the valves with sharp edge at large opening are less affected bycavitation than that at small opening. Throttle with triangle notch has better anti-cavitationability than that with square notch. The flowrate of the throttle with square notch is significantlyaffected by the flow direction or the flow passage shape.
基金National Natural Science Foundation of China(No.51405010)National Science and Technology Support Program,China(No.2011BAG09B00)
文摘The electro-hydraulic clutch control system controls the transferred torque of gear-shifting clutches in clutch-to-clutch transmissions. A nonlinear dynamic model of an electro-hydraulic clutch shift control system is presented. The mechanical and fluid subsystems of all valves are investigated, including their interactions. Model validation of the electro-hydraulic valve system is performed by comparing the simulated and measured pressure curves. The dynamic characteristics of the electro-hydraulic clutch shift control system with different supply pressures and different fluid temperatures are simulated and evaluated. It is found that pipes which are often ignored between the electro-hydraulic valve system and the clutch piston,have strong influence on clutch piston chamber pressures. In order to satisfy the required time and reduce the fluctuation of the clutch piston chamber pressures,the orifices' diameters and valve structure are optimized.
基金Supported by National Natural Science Foundation of China(Grant No.51890881)。
文摘As electro-hydrostatic actuator(EHA)technology advances towards lightweight and integration,the demand for enhanced internal flow pathways in hydraulic valve blocks intensifies.However,owing to the constraints imposed by traditional manufacturing processes,conventional hydraulic integrated valve blocks fail to satisfy the demands of a more compact channel layout and lower energy dissipation.Notably,the subjectivity in the arrangement of internal passages results in a time-consuming and labor-intensive process.This study employed additive manufacturing technology and the ant colony algorithm and B-spline curves for the meticulous design of internal passages within an aviation EHA valve block.The layout environment for the valve block passages was established,and path optimization was achieved using the ant colony algorithm,complemented by smoothing using B-spline curves.Three-dimensional modeling was performed using SolidWorks software,revealing a 10.03%reduction in volume for the optimized passages compared with the original passages.Computational fluid dynamics(CFD)simulations were performed using Fluent software,demonstrating that the algorithmically optimized passages effectively prevented the occurrence of vortices at right-angled locations,exhibited superior flow characteristics,and concurrently reduced pressure losses by 34.09%-36.36%.The small discrepancy between the experimental and simulation results validated the efficacy of the ant colony algorithm and B-spline curves in optimizing the passage design,offering a viable solution for channel design in additive manufacturing.
文摘Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady, for Reynolds numbers greater than 43 000. The working fluid was water, and the structure of the valve was simplified as a two dimensional axisymmetric geometrical model. Flow field visualization was numerically achieved. The effects of inlet velocity, outlet pressure, opening size as well as poppet angle on cavitation intensity in the poppet valve were numerically investigated. Experimental flow visualization was conducted to capture cavitation images near the orifice in the poppet valve with 30° poppet angle using high speed video camera. The binary cavitating flow field distribution obtained from digital processing of the original cavitation image showed a good agreement with the numerical result.
文摘Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve.It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.
基金Project(51077096)supported by the National Natural Science Foundation of ChinaProject(2012940-15-3)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘The structure and working principle of a hydraulic buffering valve for a power-shift transmission ZF-4WG308 were studied comprehensively, and a model of the hydraulic buffering valve was developed with AMESim. A bench test was conducted on a buffering valve for transmissions(ZF-4WG308) and the test results agree well with the simulated results. Further more, the influences of the key parameters of the valve on the buffering performance were also studied in details.
文摘A new robust controller is proposed to regulate both flexural vibrations and rigid body motion of a hydraulically driven flexible arm. The controller combines backstepping control and sliding mode to arrive at a controller capable of dealing with a nonlinear system with uncertainties. The sliding mode technique is used to achieve an asymptotic joint angle and vibration regulation in the presence of payload uncertainty by providing a virtual torque input at the joint while the backstepping technique is used to regulate the spool position of a hydraulic valve to provide the required torque. It is shown that there is no chatter in the hydraulic valve, which results in smoother operation of the system.
文摘In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a function of the external actuation system In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. Moreover, the numerical model of the working fluid is modified in order to account also for the non-Newtonian fluids. The effects of the shear rate on the shear stress are accounted for both by using experimental measurements and correlations available in literature, such as the Herschel-Bulkley model. The analysis determines the performance of the control directional valve under different operating conditions when using either Newtonian or non-Newtonian fluids. In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated.
基金This project is supported by State Scientific Project of the Tenth Five-year Plan of China(No.2002BA208B02)National Natural Science Foundation of China(No.50305032).
文摘The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments arc carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out.
基金Supported by the National Natural Science Foundation of China(No.51505412)the Independent Study Program for Young Teachers in Yanshan University(No.14LGB004)
文摘Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.
基金supported by the National Natural Science Foundation of China(Nos.51805376 and U1709208)the Zhejiang Provincial Natural Science Foundation of China(Nos.LY20E050028 and LD21E050001)。
文摘Because the hydraulic directional valve usually works in a bad working environment and is disturbed by multi-factor noise,the traditional single sensor monitoring technology is difficult to use for an accurate diagnosis of it.Therefore,a fault diagnosis method based on multi-sensor information fusion is proposed in this paper to reduce the inaccuracy and uncertainty of traditional single sensor information diagnosis technology and to realize accurate monitoring for the location or diagnosis of early faults in such valves in noisy environments.Firstly,the statistical features of signals collected by the multi-sensor are extracted and the depth features are obtained by a convolutional neural network(CNN)to form a complete and stable multi-dimensional feature set.Secondly,to obtain a weighted multi-dimensional feature set,the multi-dimensional feature sets of similar sensors are combined,and the entropy weight method is used to weight these features to reduce the interference of insensitive features.Finally,the attention mechanism is introduced to improve the dual-channel CNN,which is used to adaptively fuse the weighted multi-dimensional feature sets of heterogeneous sensors,to flexibly select heterogeneous sensor information so as to achieve an accurate diagnosis.Experimental results show that the weighted multi-dimensional feature set obtained by the proposed method has a high fault-representation ability and low information redundancy.It can diagnose simultaneously internal wear faults of the hydraulic directional valve and electromagnetic faults of actuators that are difficult to diagnose by traditional methods.This proposed method can achieve high fault-diagnosis accuracy under severe working conditions.
基金the National Natural Science Foundation of China (No. 50975055) for financial support
文摘In this paper, taking two degrees of freedom on the armature–flapper assembly into account, a seventh-order model is deduced and proposed for the dynamic response of a two-stage electro-hydraulic servo valve from nonlinear equations. These deductions are based on fundamental laws of electromagnetism, fluid, and general mechanics. The coefficients of the proposed seventhorder model are derived in terms of servo valve physical parameters and fluid properties explicitly.For validating the results of the proposed model, an AMESim simulation model based on physical laws and the existing low-order models validated by other researchers through experiments are used to compare with the seventh-order model. The results show that the seventh-order model can reflect the physical behavior of the servo valve more explicitly than the existing low-order models and it could provide guidance more easily for a linear control design approach and sensitivity analysis than the AMESim simulation model.
文摘The finite element method of computational fluid dynamics was applied to simulate the internal flow field in hydraulic spool valve which is one of the most important components in hydraulic technique. The formation of the vortexes with time was investigated under two different flow conditions. Two kinds of flow descriptions including streamline patterns and velocity vector plots were given to show the flow field inside the spool valve clearly, which is of theoretical significance and of practical values to analyze energy loss and fluid noise in the valve and to optimize the intermal flow structure of the valve.
基金supported by National Science Foundation for Distinguished Young Scholars of China(No.50825502)National Natural Science Foundation of China(No.51105016)
文摘A direct drive actuator (DDA) with direct drive valves (DDVs) as the control device is an ideal solution for a flight actuation system. This paper presents a novel triple-redundant voice coil motor (TRVCM) used for redundant DDVs. The TRVCM features electrical/mechanical hybrid triple-redundancy by securing three stators along with three moving coils in the same frame. A permanent magnet (PM) Halbach array is employed in each redundant VCM to simplify the system structure. A back-to-back design between neighborly redundancies is adopted to decouple the magnetic flux linkage. The particle swarm optimization (PSO) method is implemented to optimize design parameters based on the analytical magnetic circuit model. The optimization objective function is defined as the acceleration capacity of the motor to achieve high dynamic performance. The optimal geometric parameters are verified with 3D magnetic field finite element analysis (FEA). A research prototype has been developed for experimental purpose. The experimental results of magnetic field density and force output show that the proposed TRVCM has great potential of applications in DDA systems.