期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Force Control Compensation Method with Variable Load Stiffness and Damping of the Hydraulic Drive Unit Force Control System 被引量:10
1
作者 KONG Xiangdong BA Kaixian +3 位作者 YU Bin CAO Yuan ZHU Qixin ZHAO Hualong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期454-464,共11页
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force... Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness. 展开更多
关键词 quadruped robot force control system hydraulic drive unit force control compensation method variable load stiffness and damping simulation
下载PDF
CONTROL STRATEGY FOR ELECTRO-HYDRAULIC POSITION SERVO SYSTEM WITH GENERALIZED PULSE CODE MODULATION 被引量:1
2
作者 LIU Rong PAN Huachen CHEN Ying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期50-53,共4页
A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work conditi... A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work condition is poor and a large flow rate is required. It is difficult to control the GPCM system because the system is discrete. With consideration of the stability and speediness of the GPCM position servo control system, a control strategy is developed through the theoretical and ex-perimental analyses. The control strategy integrates the merits of Bang-Bang control, PID control and fuzzy control. With this hybrid control strategy, the electro hydraulic control system has good per-formances, and the servo control is carried out with GPCM through on-off valves. 展开更多
关键词 Generalized pulse code modulation (GPCM) Position control Electro hydraulic control
下载PDF
CONSTANT WORK-POINT CONTROL FOR PARALLEL HYBRID SYSTEM WITH CAPACITOR ACCUMULATOR IN HYDRAULIC EXCAVATOR 被引量:4
3
作者 ZHANG Yanting WANG Qingfeng XIAO Qing FU Qiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期505-508,共4页
Limitations of various accumulators in hybrid hydraulic excavator are analyzed. A program using capacitor as the accumulator based on constant work-point control is put forward. A simulating experimental system of hyb... Limitations of various accumulators in hybrid hydraulic excavator are analyzed. A program using capacitor as the accumulator based on constant work-point control is put forward. A simulating experimental system of hybrid construction machinery is established, and experimental study on constant work-point control for parallel hybrid system with capacitor accumulator is carried out using the pressure and flow rate derived from boom cylinder of hydraulic excavator in actual work as the simulating loads. A program of double work-point control is proposed and proved by further experiments. 展开更多
关键词 Hybrid hydraulic excavator Capacitor accumulator Constant work-point control Double work-point control
下载PDF
HYDRAULIC ACTIVE GUIDE ROLLER SYSTEM FOR HIGH-SPEED ELEVATOR BASED ON FUZZY CONTROLLER 被引量:1
4
作者 FENG Yonghui ZHANG Jianwu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期68-73,共6页
Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuz... Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance. 展开更多
关键词 High-speed elevator Horizontal vibrations hydraulic active guide roller system Fuzzy logic control
下载PDF
OPTIMIZED DESIGN OF HYDRAULIC CONTROL PATTERN OF SYNCHRONOUS SYSTEM IN LARGE SCALE DIE-FORMING HYDRAULIC PRESS
5
作者 Tan Jianping Zhong Jue Yan Jian 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 1996年第1期125-129,140,共6页
The hydraulic control mode of the synchronous system in Chinese-built 300 MN dieforming hydraulic press was analysed comprehensively.To improve the deficiency of the existing system,a series investigations were put fo... The hydraulic control mode of the synchronous system in Chinese-built 300 MN dieforming hydraulic press was analysed comprehensively.To improve the deficiency of the existing system,a series investigations were put forward,such as the controlling of inclination angular-velocity,the pre-estimating of compensation,the synchronous cylinder's pressure signal protection,ratio pressure control and changing flow control etc,to increase the system's control accuracy and reliability greatly. 展开更多
关键词 synchronous system hydraulic control OPTIMIZATION
下载PDF
NEW HYDRAULIC ACTUATOR'S POSITION SERVOCONTROL STRATEGY 被引量:3
6
作者 KE Zunrong ZHU Yuquan LING Xuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期46-53,共8页
A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical m... A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical model of the system is built up and several control strategies are discussed. Based on the mathematical model, simulation research and experimental investigation with subsection PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control adopted respectively are carried out, and the results indicate that compared with PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control don't need controlled system's accurate model and have fast response, high control accuracy and strong robustness, they are very suitable for HM position servo control system. 展开更多
关键词 hydraulic muscle (HM) Position servocontrol control strategies Subsection PID control Neural network self-adaptive PID control Single neuron self-adaptive PID control
下载PDF
High Speed On/Off Valve Control Hydraulic Propeller 被引量:12
7
作者 ZHU Kangwu GU Linyi +1 位作者 CHEN Yuanjie LI Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期463-473,共11页
The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the eff... The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the efficiency of traditional hydraulic propulsion system controlled by throttle valves is too low.Therefore,in this paper,for small and medium ROVs,a novel propulsion system with higher efficiency based on high speed on/off valve control hydraulic propeller is proposed.To solve the conflict between large flow rate and high frequency response performance,a two-stage high speed on/off valve-motor unit with large flow rate and high response speed simultaneously is developed.Through theoretical analysis,an effective fluctuation control method and a novel pulse-width-pulse-frequency-modulation(PWPFM) are introduced to solve the conflict among inherently fluctuation,valve dynamic performance and system efficiency.A simulation model is established to evaluate the system performance.To prove the advantage of system in energy saving,and test the dynamic control performance of high speed on/off valve control propeller,a test setup is developed and a series of comparative experiments is completed.The smimulation and experiment results show that the two-stage high speed on/off valve has an excellent dynamic response performance,and can be used to realize high accuracy speed control.The experiment results prove that the new propulsion system has much more advantages than the traditional throttle speed regulation system in energy saving.The lowest efficiency is more than 40%.The application results on a ROV indicate that the high speed on/off valve control propeller system has good dynamic and steady-state control performances.Its transient time is only about 1 s-1.5 s,and steady-state error is less than 5%.Meanwhile,the speed fluctuation is small,and the smooth propeller speed control effect is obtained.On the premise of good propeller speed control performance,the proposed high speed on/off valve control propeller can improve the effeciency of ROV propulsion system significantly,and provides another attractive ROV propulsion system choice for engineers. 展开更多
关键词 high speed on/off valve fluctuation control pulse-width-pulse-frequency-modulation(PWPFM) hydraulic propulsion system remotely-operated-underwater-vehicle(ROV) energy saving system
下载PDF
Variants of Secondary Control with Power Recovery for Loading Hydraulic Driving Device 被引量:4
8
作者 LI Wanguo FU Yongling +1 位作者 CHEN Juan QI Xiaoye 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期618-633,共16页
Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and thos... Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and those with high dynamic performance typically have low energy efficiency. In this paper, the variants of secondary control(VSC) with power recovery are developed to solve this problem for loading hydraulic driving devices that operate under variable pressure, unlike classical secondary control(CSC) that operates in constant pressure network. Hydrostatic secondary control units are used as the loading components, by which the absorbed mechanical power from the tested device is converted into hydraulic power and then fed back into the tested system through 4 types of feedback passages(FPs). The loading subsystem can operate in constant pressure network, controlled variable pressure network, or the same variable pressure network as that of the tested device by using different FPs. The 4 types of systems are defined, and their key techniques are analyzed, including work principle, simulating the work state of original tested device, static operation points, loading performance, energy efficiency, and control strategy, etc. The important technical merits of the 4 schemes are compared, and 3 of the schemes are selected, designed, simulated using AMESim and evaluated. The researching results show that the investigated systems can simulate the given loads effectively, realize the work conditions of the tested device, and furthermore attain a high power recovery efficiency that ranges from 0.54 to 0.85, even though the 3 schemes have different loading performances and energy efficiencies. This paper proposes several loading schemes that can achieve both high dynamic performance and high power recovery efficiency. 展开更多
关键词 load simulator variants of secondary control power recovery efficiency energy regeneration hydraulic driving device simulation A
下载PDF
WORKING LIQUID PRESSURE AND ITS CONTROL IN HYDRAULIC DRAWING PROCESSES OF CUPS
9
作者 Liu Yan,Bai Shujie,Kang Guosheng,Li Tianyou (Department of Mechanical Engineering, Taiyuan Heavy Machinery Institute) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第3期279-281,285,共4页
A method of setting up a pressure-stroke characteristic of the working liquid in hydraulic drawing is studied. A pressure-stroke characteristic and software for controlling its forming process are also developed. An... A method of setting up a pressure-stroke characteristic of the working liquid in hydraulic drawing is studied. A pressure-stroke characteristic and software for controlling its forming process are also developed. And a set of pressure controlling devices with PLC as a central processor are designed. It can be got from the relevant experiments that the pressure-stroke characteristic is correct and its control for forming process is available. 展开更多
关键词 hydraulic drawing Working liquid pressure Pressure control
下载PDF
A Multi-mode Electronic Load Sensing Control Scheme with Power Limitation and Pressure Cut-off for Mobile Machinery
10
作者 Min Cheng Bolin Sun +1 位作者 Ruqi Ding Bing Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期157-170,共14页
In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are ... In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions. 展开更多
关键词 hydraulic control Load sensing MULTI-MODE Power limitation Mobile machinery
下载PDF
SOLUTION FOR PRESSURE DISTRIBUTION IN SQUEEZE FILM DAMPER WITH ELECTROHYDRAULIC ACTIVE CONTROL
11
作者 Li Yunhua Wang Zhanlin Beijing University of Aeronautics and Astronautics Chen Jieli Taiwan Cheng Kung University 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1999年第1期28-32,共5页
Aiming at the problems existed in the squeeze film damper of the rotating machinery utilizing traditional passive dynamic pressure film bearing, a project of dynamic pressure and static pressure hybrid oil film bearin... Aiming at the problems existed in the squeeze film damper of the rotating machinery utilizing traditional passive dynamic pressure film bearing, a project of dynamic pressure and static pressure hybrid oil film bearing with piezoelectric crystal electrohydraulic active control supply orifice hole is proposed. For this kind of hybrid film bearing, the π film assumption can not hold true. In order to solve the pressure distribution, a new kind of solving method is proposed. 展开更多
关键词 hydraulic control Squeeze film damper Rotor dynamics
全文增补中
Research on Energy Conversion System of Floating Wave Energy Converter 被引量:6
12
作者 张亚群 盛松伟 +2 位作者 游亚戈 吴必军 刘洋 《China Ocean Engineering》 SCIE EI CSCD 2014年第1期105-113,共9页
A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydrauli... A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special“self-hydraulic control system”to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion. 展开更多
关键词 hydraulic power take-off system (PTO) second transfers conversion efficiency hydraulic control
下载PDF
Design and implementation of a nonlinear robust controller based on the disturbance observer for the active spray boom suspension
13
作者 Longfei Cui Xinyu Xue +3 位作者 Wei Kong Suming Ding Wei Gu Feixiang Le 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2023年第1期153-161,共9页
Spray boom vibrations are one of the main causes of the uneven distribution of agrochemicals.Using active suspension to maintain the correct height of nozzles is critical for obtaining a uniform spray pattern and mini... Spray boom vibrations are one of the main causes of the uneven distribution of agrochemicals.Using active suspension to maintain the correct height of nozzles is critical for obtaining a uniform spray pattern and minimizing the possibility of spray drift.However,the electro-hydraulic active pendulum boom suspension has nonlinear uncertain factors such as parameter uncertainties,external disturbances,model error,etc.,which complicate the design of the controller.Therefore,this paper proposes a nonlinear robust feedback control method with disturbances compensation,which integrates a robust controller and disturbance observers through the backstepping method.Initially,to verify the performance of the controller,the Lyapunov stability theory is used to prove that the proposed controller can guarantee the given transient performance and the final tracking accuracy.Furthermore,taking the active suspension of a 28 m wide boom driven by a single-rod hydraulic actuator as an implementation case,the proposed NRCDC controller was compared with a variety of control schemes through a rapid control prototype of a pendulum active suspension.Finally,the proposed control scheme is implemented on a self-propelled sprayer with a boom of 12 m in length.The field test results show that all the performance indicators of the NRCDC controller are better than the other three conventional controllers.Both laboratory and field tests have verified the effectiveness and high performance of the proposed controller. 展开更多
关键词 robust control sprayer boom boom suspension hydraulic control system disturbance observer
原文传递
A practical nonlinear robust control approach of electro-hydraulic load simulator 被引量:10
14
作者 Wang Chengwen Jiao Zongxia +1 位作者 Wu Shuai Shang Yaoxing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第3期735-744,共10页
This paper studies a nonlinear robust control algorithm of the electro-hydraulic load simulator (EHLS). The tracking performance of the EHLS is mainly limited by the actuator's motion disturbance, flow nonlinearity... This paper studies a nonlinear robust control algorithm of the electro-hydraulic load simulator (EHLS). The tracking performance of the EHLS is mainly limited by the actuator's motion disturbance, flow nonlinearity, and friction, etc. The developed controller is developed based on the nonlinear motion loading model. The problems of the actuator's disturbance and flow nonlinearity are considered. To address the friction problem, the friction model of the loading motor is identified experimentally. The friction disturbance is compensated using the obtained friction model. Therefore, this paper considers the main three factors comprehensively. The developed algorithm is easy to apply since the controller can be obtained just with one step back-stepping design. The stability of the developed algorithm is proven via Lyapunov analysis. Both co-simulation and experiments are performed to verify the effectiveness of this method. 展开更多
关键词 CO-SIMULATION Electro-hydraulic load simulator hydraulic control equipment Nonlinear robust control Parametric uncertainty
原文传递
Optimization Based on Convergence Velocity and Reliability for Hydraulic Servo System 被引量:5
15
作者 Muhammad Babar Nazir 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第4期407-412,共6页
This article presents an optimal hybrid fuzzy proportion integral derivative (HFPID) controller based on combination of proportion integral derivative (PID) and fuzzy controllers, by which the parameters could be ... This article presents an optimal hybrid fuzzy proportion integral derivative (HFPID) controller based on combination of proportion integral derivative (PID) and fuzzy controllers, by which the parameters could be evaluated by global optimization either in convergence velocity or in convergence reliability. Focusing on the nonlinear factors of hydraulic servo system, this article takes advantage of PID and fuzzy logic controller integrated with scaling factors to acquire precise tracking performances. To further improve the performances, it provides new developed optimization with rapid convergence to attain reliable approach probability. Focusing on the performance indictors of evolutionary algorithm, this article presents a new technique to predict reliability of the optimization algorithm. Statistics authenticates the effectiveness and robustness of the optimization. Further, many simulation and experimental results indicate that the optimal HFPID could acquire perfect immunity against parametric uncertainties with external disturbance. 展开更多
关键词 adaptive control system novel evolutionary algorithm hydraulic control equipment convergence velocity convergencereliability OPTIMIZATION
原文传递
Motion synchronization in a dual redundant HA/EHA system by using a hybrid integrated intelligent control design 被引量:4
16
作者 Waheed Ur Rehman Wang Shaoping +2 位作者 Wang Xingjian Fan Lei Kamran Ali Shah 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期789-798,共10页
This paper presents an integrated fuzzy controller design approach to synchronize a dis- similar redundant actuation system of a hydraulic actuator (HA) and an electro-hydrostatic actu- ator (EHA) with system unce... This paper presents an integrated fuzzy controller design approach to synchronize a dis- similar redundant actuation system of a hydraulic actuator (HA) and an electro-hydrostatic actu- ator (EHA) with system uncertainties and disturbances. The motion synchronous control system consists of a trajectory generator, an individual position controller for each actuator, and a fuzzy force tracking controller (FFTC) for both actuators. The trajectory generator provides the desired motion dynamics and designing parameters of the trajectory which are taken according to the dynamic characteristics of the EHA. The position controller consists of a feed-forward controller and a fuzzy position tracking controller (FPTC) and acts as a decoupled controller, improving posi- tion tracking performance with the help of the feed-forward controller and the FPTC. The FFTC acts as a coupled controller and takes into account the inherent coupling effect. The simulation results show that the proposed controller not only eliminates initial force fighting by synchronizing the two actuators, but also improves disturbance rejection performance. 展开更多
关键词 Dissimilar redundant:Electro-hydrostatic actuator Fuzzy controlhydraulic actuator Motion synchronization Redundant systems
原文传递
Design of a Hydraulic Control Unit for a Two-Speed Dedicated Electric Vehicle Transmission 被引量:2
17
作者 Xiangyang Xu Wenbo Sun +2 位作者 Tianyuan Cai Yanfang Liu Xiao Han 《Automotive Innovation》 EI 2018年第4期300-310,共11页
Two-speed automatic transmission is one solution to increase the economic efficiency and dynamic performance of battery electric vehicles(BEV).Hydraulic control unit(HCU)is a key component in automatic transmissions,w... Two-speed automatic transmission is one solution to increase the economic efficiency and dynamic performance of battery electric vehicles(BEV).Hydraulic control unit(HCU)is a key component in automatic transmissions,which determines the quality of shifting directly.Based on the structural scheme and shift logic of a two-speed dedicated electric vehicles transmission(2DET)with two wet clutches,we designs a 2DET hydraulic control unit composed of three subsystems:pressure regulating and flow control system,shift operated and control system and cooling and lubrication system.The results of the experiments,including the valve body bench test,transmission bench test and vehicle test,show that the design of hydraulic control unit meets the requirements. 展开更多
关键词 Battery electric vehicle Automatic transmission hydraulic control unit Dynamic simulation
原文传递
FOUR-PARAMETER AUTOMATIC TRANSMISSION TECHNOLOGY FOR CONSTRUCTION VEHICLE BASED ON ELMAN RECURSIVE NEURAL NETWORK 被引量:6
18
作者 ZHANG Hongyan ZHAO Dingxuan +1 位作者 TANG Xinxing Ding Chunfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期20-24,共5页
From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction veh... From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction vehicle. A new four-parameter shift schedule is presented, which can keep the torque converter working in the high efficiency area. The control algorithm based on the Elman recursive neural network is applied, and four-parameter control system is developed which is based on industrial computer. The system is used to collect data accurately and control 4D180 power-shift gearbox of ZL50E wheel loader shift timely. An experiment is done on automatic transmission test-bed, and the result indicates that the control system could reliably and safely work and improve the efficiency of hydraulic torque converter. Four-parameter shift strategy that takes into account the power consuming of the working pump has important operating significance and reflects the actual working status of construction vehicle. 展开更多
关键词 Construction vehicle hydraulic transmission and control Automatic transmission Elman recursive neural network
下载PDF
Direct shear tests on cemented paste backfill-rock wall and cemented paste backfill-backfill interfaces 被引量:21
19
作者 Nabassé J.F.Koupouli Tikou Belem +1 位作者 Patrice Rivard Hervé Effenguet 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第4期472-479,共8页
Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under dif... Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks,which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality(PVI) method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results. 展开更多
关键词 Jinping I arch dam Inverse modeling hydraulic conductivity Fractured rock Groundwater flow Seepage control
下载PDF
On the hydrodynamics of hydraulic machinery and flow control 被引量:6
20
作者 陈红勋 马峥 +6 位作者 张伟 朱兵 张睿 魏群 张正川 刘超 何建武 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第5期782-789,共8页
Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry,... Hydraulic machinery mainly includes turbine and pump, which is closely related to national economy and people's livelihood involving aerospace industry, marine engineering, hydropower engineering, petroleum industry, chemical industry, mining industry, biomedical engineering, environmental engineering, agricultural water-soil engineering, etc.. The internal flow of hydraulic machinery is extremely complex, and its characteristics can be summarized as high Reynolds number, multi-scales, inhomogeneous and vortex-dominant unsteady turbulence which interact with the rotating dynamic boundary(rotor blade). Based on the analysis of the internal flow characteristics of hydraulic machinery, the author and his research team successively proposed a rotation correction model, a curvature corrected filter-based model, a scalable detached eddy simulation method, and a non-linear hybrid RANS/LES turbulence model to capture unsteady flow structures and then predict hydraulic performance and dynamic characteristics more accurately. According to the analysis on the internal flow, the corresponding flow control measures were put forward. It was verified by experiments that these methods could significantly improve the hydraulic performance, anti-cavitation performance and dynamic characteristics(pressure pulsation and vibration) of hydraulic machinery in a certain range of operating conditions. In addition, the mechanism how flow control measures influence internal flow was analyzed in depth, aiming at finding a feasible and effective way to improve hydraulic performance, anti-cavitation performance and dynamic characteristics of hydraulic machinery. 展开更多
关键词 hydraulic machinery unsteady flow turbulence model flow control method dynamic characteristic
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部