A jet mill bit(JMB)is proposed to increase the drilling efficiency and safety of horizontal wells,which has the hydraulic characteristics of depressurization and cuttings cleaning.This paper fills the gap in the hydra...A jet mill bit(JMB)is proposed to increase the drilling efficiency and safety of horizontal wells,which has the hydraulic characteristics of depressurization and cuttings cleaning.This paper fills the gap in the hydraulic study of the JMB by focusing on the hydraulic modeling and optimization of the JMB and considering these two hydraulic characteristics.First,the hydraulic depressurization model and the hydraulic cuttings cleaning model of the JMB are developed respectively.In the models,the pressure ratio and efficiency are chosen as the evaluation parameters of the depressurization capacity of the JMB,and the jet hydraulic power and jet impact force are chosen as the evaluation parameters of cuttings cleaning capacity of the JMB.Second,based on the hydraulic models,the effects of model parameters[friction loss coefficient,target inclination angle,rate of penetration(ROP),flow ratio,and well depth]on the hydraulic performance of the JMB are investigated.The results show that an increase in the friction loss coefficient and target inclination angle cause a significant reduction in the hydraulic depressurization capacity,and the effect of ROP is negligible.The flow ratio is positively related to the hydraulic cuttings cleaning capacity,and the well depth determines the maximum hydraulic cuttings cleaning capacity.Finally,by combining the hydraulic depressurization model and hydraulic cuttings cleaning model,an optimization method of JMB hydraulics is proposed to simultaneously maximize the jet depressurization capacity and the cuttings cleaning capacity.According to the drilling parameters given,the optimal values of the drilling fluid flow rate,backward nozzle diameter,forward nozzle diameter,and throat diameter can be determined.Moreover,a case study is conducted to verify the effectiveness of the optimization method.展开更多
This study modeled the effects of structural and dimensional manipulations on hydrodynamic behavior of a bench vertical current classifier. Computational fluid dynamics (CFD) approach was used as modeling method, an...This study modeled the effects of structural and dimensional manipulations on hydrodynamic behavior of a bench vertical current classifier. Computational fluid dynamics (CFD) approach was used as modeling method, and turbulent intensity and fluid velocity were applied as system responses to predict the over- flow cut size variations. These investigations showed that cut size would decrease by increasing diameter and height of the separation column and cone section depth, due to the decrease of turbulent intensity and fluid velocity. As the size of discharge gate increases, the overflow cut-size would decrease due to freely fluid stream out of the column. The overflow cut-size was significantly increased in downward fed classifier compared to that fed by upward fluid stream. In addition, reforming the shape of angular overflow outlet's weir into the curved form prevented stream inside returning and consequently unselec- tire cut-size decreasing.展开更多
With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system...With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.展开更多
基金financially supported by Youth Project of Natural Science Basic Research Program of Shaanxi Province(Grant number:2023-JC-QN-0538)Scientifical Research Program for Youth Innovation Team Construction of Shaanxi Provincial Department of Education(Grant number:21JP054,22JP032)+1 种基金National Natural Science Foundation of China(Grant numbers:52174012,51804322,51821092,51774301,U1762214)Open Fund(PLC 20210404)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology)。
文摘A jet mill bit(JMB)is proposed to increase the drilling efficiency and safety of horizontal wells,which has the hydraulic characteristics of depressurization and cuttings cleaning.This paper fills the gap in the hydraulic study of the JMB by focusing on the hydraulic modeling and optimization of the JMB and considering these two hydraulic characteristics.First,the hydraulic depressurization model and the hydraulic cuttings cleaning model of the JMB are developed respectively.In the models,the pressure ratio and efficiency are chosen as the evaluation parameters of the depressurization capacity of the JMB,and the jet hydraulic power and jet impact force are chosen as the evaluation parameters of cuttings cleaning capacity of the JMB.Second,based on the hydraulic models,the effects of model parameters[friction loss coefficient,target inclination angle,rate of penetration(ROP),flow ratio,and well depth]on the hydraulic performance of the JMB are investigated.The results show that an increase in the friction loss coefficient and target inclination angle cause a significant reduction in the hydraulic depressurization capacity,and the effect of ROP is negligible.The flow ratio is positively related to the hydraulic cuttings cleaning capacity,and the well depth determines the maximum hydraulic cuttings cleaning capacity.Finally,by combining the hydraulic depressurization model and hydraulic cuttings cleaning model,an optimization method of JMB hydraulics is proposed to simultaneously maximize the jet depressurization capacity and the cuttings cleaning capacity.According to the drilling parameters given,the optimal values of the drilling fluid flow rate,backward nozzle diameter,forward nozzle diameter,and throat diameter can be determined.Moreover,a case study is conducted to verify the effectiveness of the optimization method.
基金financially supported by INVENTIVE~ Mineral Processing Research Center of Iran
文摘This study modeled the effects of structural and dimensional manipulations on hydrodynamic behavior of a bench vertical current classifier. Computational fluid dynamics (CFD) approach was used as modeling method, and turbulent intensity and fluid velocity were applied as system responses to predict the over- flow cut size variations. These investigations showed that cut size would decrease by increasing diameter and height of the separation column and cone section depth, due to the decrease of turbulent intensity and fluid velocity. As the size of discharge gate increases, the overflow cut-size would decrease due to freely fluid stream out of the column. The overflow cut-size was significantly increased in downward fed classifier compared to that fed by upward fluid stream. In addition, reforming the shape of angular overflow outlet's weir into the curved form prevented stream inside returning and consequently unselec- tire cut-size decreasing.
基金This work is supported by the National Natural Science Foundation of China (Grant No. 51275373)and the Key Project of National Natural Science Foundation of China (Grant No.50830230) Hubei Province young teachers of college working into the enterprise project, number: XD2012363.
文摘With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.