期刊文献+
共找到240,472篇文章
< 1 2 250 >
每页显示 20 50 100
Power Matching and Energy Efficiency Improvement of Hydraulic Excavator Driven with Speed and Displacement Variable Power Source 被引量:14
1
作者 Lei Ge Long Quan +2 位作者 Xiaogang Zhang Zhixin Dong Jing Yang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期142-153,共12页
Mobile machinery energy efficiency and emission pollution are the national and worldwide issues. This paper contributes in solving these problems by applying a speed variable power source. Unfortunately, almost all of... Mobile machinery energy efficiency and emission pollution are the national and worldwide issues. This paper contributes in solving these problems by applying a speed variable power source. Unfortunately, almost all of the speed variable systems have the dynamic response problem when the motor starts with full load or heavy load. To address this problem, a hydraulic accumulator is used to balance the load of the power source for assisting starting of the motor and a matching method combined with speed and displacement control of the pump is proposed to improve the energy efficiency and dynamic performance simultaneously under different working conditions. Also, the power source/valve combined control strategy of an independent metering system is designed to realize flow matching of the whole system. Firstly, a test system is established to study the dynamic performance and energy efficiency of the speed variable power source with an auxiliary accumulator. Working performance and energy consumption of the power source under different rotating speeds and different loads are studied. And then, the hydraulic excavator test rig with the proposed system is constructed. Furthermore, the working performance of the excavator with the speed-fixed and speed-variable strategy are studied comparatively. Results show that, compared with fixed-speed strategy, the electric power consumption during the idle period and partial load condition can be reduced about 2.05 kW and 1.37 kW. The energy efficiency of speed variable power source is about 40%-71%, which is higher than that of the fixed-speed power source by 3%–10%. 展开更多
关键词 hydraulic excavator Power matching Speed variable Energy efficiency
下载PDF
Study on Hydraulic System Efficiency of Heaving-Buoy Wave Energy Converter 被引量:2
2
作者 SHI Hongda ZHAO Chenyu +1 位作者 LIU Zhen CAO Feifei 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第5期1044-1052,共9页
The hydraulic system is the key component in the widely used wave energy converters(WEC).In this paper,we theoretically analyze and describe our investigation of the efficiency of the hydraulic system by simulation an... The hydraulic system is the key component in the widely used wave energy converters(WEC).In this paper,we theoretically analyze and describe our investigation of the efficiency of the hydraulic system by simulation and model testing of the combined heaving-buoy WEC.We derive a new governing equation that includes nonlinear hydraulic resistance in the power take-off(PTO).We conducted a physical model experiment based on a 100-kW prototype and applied a hydraulic system with an energy accumulator.The model test results reveal an important parameter related to efficiency with respect to nonlinear hydraulic resistance.We also studied the relationship between the efficiency and the initial conditions.Finally,based on our numerical simulation results,we discuss the effect on efficiency of the gas content of the hydraulic fluid and ways to reduce its impact. 展开更多
关键词 hydraulic system PTO nonlinear hydraulic resistance efficiency gas content
下载PDF
Effect of Hydraulic Loading Rate on the Efficiency of Effluent Treatment in a Recirculating Puffer Aquaculture System Coupled with Constructed Wetlands 被引量:3
3
作者 XU Jiabo SHI Yonghai +2 位作者 ZHANG Genyu LIU Jianzhong ZHU Yazhu 《Journal of Ocean University of China》 SCIE CAS 2014年第1期146-152,共7页
Constructed wetlands(CWs) were integrated into an indoor recirculating aquaculture system of obscure puffer(Takifugu obscurus) for effluent treatment. The effect of hydraulic loading rate(HLR) on the efficiency of eff... Constructed wetlands(CWs) were integrated into an indoor recirculating aquaculture system of obscure puffer(Takifugu obscurus) for effluent treatment. The effect of hydraulic loading rate(HLR) on the efficiency of effluent treatment by CWs was examined for over a month. The CWs were operated under brackish conditions(salinity 7.4–7.6) at 3 different HLRs(0.762, 0.633, and 0.458 m d–1) 3 times, 10 days each. Overall, the CWs exhibited high efficiency in removal of total ammonium nitrogen(by 81.03–92.81%) and nitrite nitrogen(by 99.40%–99.68%). The efficiency of CWs in removal of total ammonium nitrogen, nitrate nitrogen, total Kjeldahl nitrogen, total phosphorous, and total suspended solids(TSS) increased with the decrease of HLR. The CWs operated at the 3 HLRs in a decreasing trend proves to be effective, providing a useful method for effluent treatment in commercial puffer aquaculture systems. 展开更多
关键词 CONSTRUCTED WETLAND recirculating AQUACULTURE system PUFFER AQUACULTURE BRACKISH water hydraulic loading rate
下载PDF
Effects of hydraulic retention time, temperature, and effluent recycling on efficiency of anaerobic filter in treating rural domestic wastewater 被引量:3
4
作者 John Leju Celestino LADU Xi-wu Lü 《Water Science and Engineering》 EI CAS CSCD 2014年第2期168-182,共15页
With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable meth... With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable method for treatment of rural domestic wastewater depends on its efficiency, simplicity, and cost-effectiveness. This study investigated the effects of hydraulic retention time (HRT), temperature, and effluent recycling on the treatment efficiency of an anaerobic filter (AF) reactor. The first round of experimental operations was run for three months with HRTs of one, two, and three days, temperatures of 18℃, 21℃, and 24℃, and no effluent recycling. The second round of experimental operations was conducted for another three months with HRTs of three and four days; temperatures of 30.67℃, 30.57℃, and 26.91 ℃ ; and three effluent recycling ratios of 1:1, 1:2, and 2:1. The first round of operations showed removal rates of 32% to 44% for COD, 30% to 35% for TN, 32% to 36% for NH4-N, 19% to 23% for NO3-N, and 12% to 22% for TE In the second round of operations, the removal rates varied from 75% to 81% for COD, 35% to 41% for TN, 31% to 39% for NH4-N, 30% to 34% for NO3-N, and 41% to 48% for TP. The average gas production rates were 6.72 L/d and 7.26 L/d for the first and second rounds of operations, respectively. The gas production rate increased in the second round of operations as a result of applied effluent recycling. The best removal efficiency was obtained for an optimum HRT of three days, a temperature of 30℃, and an effluent recycling ratio of 2:1. The results show that the removal efficiency of the AF reactor was affected by HRT, temperature, and effluent recycling. 展开更多
关键词 anaerobic filter (AF) rural domestic wastewater hydraulic retention time (HRT) effluent recycling experimental operation
下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:2
5
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir Fracture conductivity Fracturing fluid hydraulic fracturing Reservoir damage
下载PDF
Evaluating the stability and volumetric flowback rate of proppant packs in hydraulic fractures using the lattice Boltzmann-discrete element coupling method 被引量:1
6
作者 Duo Wang Sanbai Li +2 位作者 Rui Wang Binhui Li Zhejun Pan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2052-2063,共12页
The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a... The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations. 展开更多
关键词 Numerical simulation hydraulic fracturing Proppant flowback Closure stress Particulate flow
下载PDF
Estimation of the anisotropy of hydraulic conductivity through 3D fracture networks using the directional geological entropy 被引量:1
7
作者 Chuangbing Zhou Zuyang Ye +2 位作者 Chi Yao Xincheng Fan Feng Xiong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期137-148,共12页
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi... With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors. 展开更多
关键词 3D fracture network Geological entropy Directional entropic scale ANISOTROPY hydraulic conductivity
下载PDF
Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO_(2) Reduction 被引量:2
8
作者 Kangwang Wang Zhuofeng Hu +8 位作者 Peifeng Yu Alina M.Balu Kuan Li Longfu Li Lingyong Zeng Chao Zhang Rafael Luque Kai Yan Huixia Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期68-84,共17页
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in... We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR. 展开更多
关键词 Quantum efficiency Electronic structure Steric interaction Bridging sites CO_(2)reduction
下载PDF
Development of a Test Apparatus for Measurement of Hydraulic Fluid Efficiency
9
作者 Matt Jackson Brian Koehler 《润滑油》 CAS 2011年第5期28-33,共6页
With increasing demand for nonrenewable resources,energy conservation is critical.Efficiency gains allow more work to be performed while maintaining or even decreasing the energy expended in the process.Reducing the e... With increasing demand for nonrenewable resources,energy conservation is critical.Efficiency gains allow more work to be performed while maintaining or even decreasing the energy expended in the process.Reducing the energy consumed by a system results in favorable economic and environmental impact.An apparatus has been developed to measure hydraulic fluid efficiency in a stationary application.The system can be used to develop more efficient fluids,leading to increased work output or decreased energy consumption. 展开更多
关键词 mechanical and volumetric efficiency test pump test procedure
下载PDF
Enhancing I^(0)/I^(-)Conversion Efficiency by Starch Confinement in Zinc-lodine Battery 被引量:1
10
作者 Danyang Zhao Qiancheng Zhu +4 位作者 Qiancheng Zhou Wenming Zhang Ying Yu Shuo Chen Zhifeng Ren 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期114-120,共7页
The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle li... The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs. 展开更多
关键词 aqueous battery conversion efficiency iodine-zinc battery starch confinement
下载PDF
Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing Block,eastern Ordos Basin,NW China 被引量:1
11
作者 YANG Fan LI Bin +3 位作者 WANG Kunjian WEN Heng YANG Ruiyue HUANG Zhongwei 《Petroleum Exploration and Development》 SCIE 2024年第2期440-452,共13页
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the... Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM. 展开更多
关键词 deep coalbed methane extreme massive hydraulic fracturing fracture network graded proppants slick water with variable viscosity Ordos Basin
下载PDF
Microscopic characteristics of tight sandstone reservoirs and their effects on the imbibition efficiency of fracturing fluids:A case study of the Linxing area,Ordos Basin 被引量:1
12
作者 Qihui Li Dazhong Ren +6 位作者 Hu Wang Haipeng Sun Tian Li Hanpeng Zhang Zhen Yan Rongjun Zhang Le Qu 《Energy Geoscience》 EI 2024年第3期328-338,共11页
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ... The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones. 展开更多
关键词 Tight sandstone Ordos Basin Fracturing fluid Microscopic reservoir characteristics Imbibition efficiency Influencing factor
下载PDF
Quantifying the Efficiency Advantages of High Viscosity Index Hydraulic Fluids
13
作者 Christian D.Neveu Michael D.Zink Alex Tsay 《润滑油》 CAS 2006年第5期23-33,共11页
By providing higher in-use viscosity at elevated operating temperatures,hydraulic fluids with high viscosity index improve the efficiency of the hydraulic system.For mobile hydraulic equipment this efficiency can be q... By providing higher in-use viscosity at elevated operating temperatures,hydraulic fluids with high viscosity index improve the efficiency of the hydraulic system.For mobile hydraulic equipment this efficiency can be quantified as an increase in fuel economy.This paper reviews the research that demonstrates these efficiency advantages in gear,vane and piston pumps and presents a method for predicting the overall fuel economy for a fleet of hydraulic equipment in operation.Finally a `Maximum Efficiency Hydraulic Fluid’ performance definition is presented which will enable an equipment operator to easily improve the performance of the system and reduce fuel consumption. 展开更多
关键词 最高效率液压机液体 粘度指数 泵效率 容积效率
下载PDF
Study of a Hydraulic Jump in an Asymmetric Trapezoidal Channel with Different Sluice Gates
14
作者 Bouthaina Debabeche Sonia Cherhabil 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1499-1516,共18页
In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asym... In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asymmetric trapezoidal flume with a length of 7 m and a width of 0.304 m is considered,with the bottom of the flume transversely inclined at an angle of m=0.296 and vertical lateral sides.The corresponding inflow Froude number is allowed to range in the interval(1.40<F1<6.11).The properties of this jump are compared to those of hydraulic jumps in channels with other types of cross-sections.A relationship for calculating hydraulic jump efficiency is proposed for the considered flume.For F1>5,the hydraulic jump is found to be more effective than that occurring in triangular and symmetric trapezoidal channels.Also,when■mes>8 and■>5,the hydraulic jump in the asymmetrical trapezoidal channel downstream of a parallelogram sluice gate is completely formed as opposed to the situation where a triangular sluice is considered. 展开更多
关键词 Asymmetric trapezoidal channel characteristic lengths efficiency Froude hydraulic jump sequent depths sluice gate
下载PDF
Research on a TOPSIS energy efficiency evaluation system for crude oil gathering and transportation systems based on a GA-BP neural network 被引量:1
15
作者 Xue-Qiang Zhang Qing-Lin Cheng +2 位作者 Wei Sun Yi Zhao Zhi-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期621-640,共20页
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud... As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems. 展开更多
关键词 Crude oil gathering and transportation system GA-BP neural network Energy efficiency evaluation TOPSIS evaluation method Energy saving and consumption reduction
下载PDF
Hydraulic properties and drought response of a tropical bamboo (Cephalostachyum pergracile)
16
作者 Wanwalee Kongjarat Lu Han +10 位作者 Amy Ny Aina Aritsara Shu-Bin Zhang Gao-Juan Zhao Yong-Jiang Zhang Phisamai Maenpuen Ying-Mei Li Yi-Ke Zou Ming-Yi Li Xue-Nan Li Lian-Bin Tao Ya-Jun Chen 《Plant Diversity》 SCIE CAS CSCD 2024年第3期406-415,共10页
Bamboo plants are an essential component of tropical ecosystems,yet their vulnerability to climate extremes,such as drought,is poorly understood due to limited knowledge of their hydraulic properties.Cephalostachyum p... Bamboo plants are an essential component of tropical ecosystems,yet their vulnerability to climate extremes,such as drought,is poorly understood due to limited knowledge of their hydraulic properties.Cephalostachyum pergracile,a commonly used tropical bamboo species,exhibited a substantially higher mortality rate than other co-occurring bamboos during a severe drought event in 2019,but the underlying mechanisms remain unclear.This study investigated the leaf and stem hydraulic traits related to drought responses,including leaf-stem embolism resistance(P50leaf;P50stem) estimated using optical and X-ray microtomography methods,leaf pressure-volume and water-releasing curves.Additionally,we investigated the seasonal water potentials,native embolism level(PLC) and xylem water source using stable isotope.We found that C.pergracile exhibited strong resistance to embolism,showing low P50leaf,P50stem,and turgor loss point,despite its rapid leaf water loss.Interestingly,its leaves displayed greater resistance to embolism than its stem,suggesting a lack of effective hydraulic vulnerability segmentation(HVS) to protect the stem from excessive xylem tension.During the dry season,approximately 49% of the water was absorbed from the upper 20-cm-deep soil layer.Consequently,significant diurnal variation in leaf water potentials and an increase in midday PLC from 5.87±2.33% in the wet season to 12.87±4.09%in the dry season were observed.In summary,this study demonstrated that the rapid leaf water loss,high reliance on surface water,and a lack of effective HVS in C.pergracile accelerated water depletion and increased xylem embolism even in the typical dry season,which may explain its high mortality rate during extreme drought events in 2019. 展开更多
关键词 Climate change DROUGHT hydraulic safety hydraulic vulnerability segmentation Stable isotope Tree mortality
下载PDF
Effects of Root Pruning on Non-Hydraulic Root-Sourced Signal, Drought Tolerance and Water Use Efficiency of Winter Wheat 被引量:5
17
作者 MA Shou-chen LI Feng-min +3 位作者 YANG Shen-jiao LI Chun-xi XU Bing-cheng ZHANG Xu-cheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第6期989-998,共10页
Two pot experiments were conducted to study the effects of root pruning at the stem elongation stage on non-hydraulic root-sourced signals (nHRS), drought tolerance and water use efficiency of winter wheat (Triticu... Two pot experiments were conducted to study the effects of root pruning at the stem elongation stage on non-hydraulic root-sourced signals (nHRS), drought tolerance and water use efficiency of winter wheat (Triticum aestivum). The root pruning significantly reduced the root weight of wheat, but had no effect on root/shoot ratio at the two tested stages. At booting stage, specific root respiration of root pruned plants was significantly higher than those with intact roots (1.06 and 0.94 mmol g-1 s-1, respectively). The soil water content (SWC) at which nHRS for root pruned plants appeared was higher and terminated lower than for intact root plants, the threshold range of nHRS was markedly greater for root pruned plants (61.1-44.6% field water capacity) than for intact root plants (57.9-46.1% field water capacity). At flowering stage, while there was no significant difference in specific root respiration. The SWCs at which nHRS appeared and terminated were both higher for root pruned plants than for intact root plants. The values of chlorophyll fluorescence parameters, i.e., the effective photosystem II quantum yield (F PS II ), the maximum photochemical efficiency of PS II (F v /F m ), coefficient of photochemical quenching (qP), and coefficient of non-photochemical quenching (NPQ), in root pruned plants were significantly higher than in intact root plants, 7 d after withholding of water. Root pruned plants had significantly higher water use efficiency (WUE) than intact root plants in well-watered and medium drought soil, but not in severe drought condition. In addition, root pruning had no significant effect on grain yield in well-watered and medium drought soil, but significantly decreased grain yield in severe drought condition. In conclusion, the current study showed that root pruning significantly altered nHRS sensitivity and improved WUE of winter wheat in well-watered and medium drought soil, but lowered drought tolerance of winter wheat in severe drought soil. This suggests a possible direction of drought- resistance breeding and potential agricultural measure to improve WUE of winter wheat under semiarid conditions. 展开更多
关键词 winter wheat root pruning non-hydraulic root-sourced signal (nHRS) root activity drought tolerance
下载PDF
Using Hydraulic Engineering Model Experiment to Study the Sediment Trapping Efficiency of Adjustable Check Dam
18
作者 Shu-Tzu Chen Hung-Ming Shu +1 位作者 Shin-En Chiu Chung-Li Hsu 《Engineering(科研)》 2016年第7期471-480,共11页
The construction of fully closed check dam (CD) is a conventional flood prevention mechanism implemented on rivers. Fully closed CDs trap large amounts of sediments in rivers to stabilize the river slopes and control ... The construction of fully closed check dam (CD) is a conventional flood prevention mechanism implemented on rivers. Fully closed CDs trap large amounts of sediments in rivers to stabilize the river slopes and control erosion. However, fully closed CDs cannot selectively trap sediment and may easily overflow, causing them to losing their ability to mediate and hold sediments. Previous studies proposed the concept of “breathable CDs”. The researcher introduced metal slit dam (SD) that could be assembled and disassembled quickly and conveniently. Once a CD reaches maximum capacity, operators must ensure that the water channels of the dam are free from blockage. Moreover, they must inspect the internal accumulation conditions of the dam periodically or immediately following heavy typhoon rains. When necessary, either the sediment buildup in the upriver blockage must be cleared, or the transverse structure of the dam must be removed to allow fine particles to be discharged along with a moderate amount of water. These actions can free up the sediment-storing capacity of the dam for the next heavy typhoon rains. In addition, operators should also inspect the damages inflicted on the dam, such as erosion, wear and tear, and deformation conditions. Damaged components should be disassembled and repaired if possible, or recycled and reused. The present study performed channel tests to simulate closed CDs, SDs, steel pipe dam (SPDs), and steel pipe plus slit dam (SPSDs) for 50-year and 100-year frequency floods. Results were then analyzed to determine the sediment trapping (ST) effects of various CDs, the effects of “adjustable CDs”, and the changes of moderated riverbeds. 展开更多
关键词 Sediment Trapping Check Dam Riverbed Change hydraulic Engineering Model Experiment
下载PDF
Stress tensor determination by modified hydraulic tests on pre-existing fractures:Method and stress constraints
19
作者 Guiyun Gao Chenghu Wang Ke Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1637-1648,共12页
The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determinati... The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole. 展开更多
关键词 Stress tensor hydraulic tests on pre-existing fractures Mean stress Stress constraint hydraulic fracturing
下载PDF
Influences of clean fracturing fluid viscosity and horizontal in-situ stress difference on hydraulic fracture propagation and morphology in coal seam
20
作者 Gang Wang Shuxin Wang +5 位作者 Yixin Liu Qiming Huang Shengpeng Li Shuliang Xie Jinye Zheng Jiuyuan Fan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期159-175,共17页
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ... The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters. 展开更多
关键词 Clean fracturing fluid hydraulic fracturing VISCOSITY Horizontal in-situ stress difference hydraulic fracture morphology Acoustic emission
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部