Mobile machinery energy efficiency and emission pollution are the national and worldwide issues. This paper contributes in solving these problems by applying a speed variable power source. Unfortunately, almost all of...Mobile machinery energy efficiency and emission pollution are the national and worldwide issues. This paper contributes in solving these problems by applying a speed variable power source. Unfortunately, almost all of the speed variable systems have the dynamic response problem when the motor starts with full load or heavy load. To address this problem, a hydraulic accumulator is used to balance the load of the power source for assisting starting of the motor and a matching method combined with speed and displacement control of the pump is proposed to improve the energy efficiency and dynamic performance simultaneously under different working conditions. Also, the power source/valve combined control strategy of an independent metering system is designed to realize flow matching of the whole system. Firstly, a test system is established to study the dynamic performance and energy efficiency of the speed variable power source with an auxiliary accumulator. Working performance and energy consumption of the power source under different rotating speeds and different loads are studied. And then, the hydraulic excavator test rig with the proposed system is constructed. Furthermore, the working performance of the excavator with the speed-fixed and speed-variable strategy are studied comparatively. Results show that, compared with fixed-speed strategy, the electric power consumption during the idle period and partial load condition can be reduced about 2.05 kW and 1.37 kW. The energy efficiency of speed variable power source is about 40%-71%, which is higher than that of the fixed-speed power source by 3%–10%.展开更多
The hydraulic system is the key component in the widely used wave energy converters(WEC).In this paper,we theoretically analyze and describe our investigation of the efficiency of the hydraulic system by simulation an...The hydraulic system is the key component in the widely used wave energy converters(WEC).In this paper,we theoretically analyze and describe our investigation of the efficiency of the hydraulic system by simulation and model testing of the combined heaving-buoy WEC.We derive a new governing equation that includes nonlinear hydraulic resistance in the power take-off(PTO).We conducted a physical model experiment based on a 100-kW prototype and applied a hydraulic system with an energy accumulator.The model test results reveal an important parameter related to efficiency with respect to nonlinear hydraulic resistance.We also studied the relationship between the efficiency and the initial conditions.Finally,based on our numerical simulation results,we discuss the effect on efficiency of the gas content of the hydraulic fluid and ways to reduce its impact.展开更多
Constructed wetlands(CWs) were integrated into an indoor recirculating aquaculture system of obscure puffer(Takifugu obscurus) for effluent treatment. The effect of hydraulic loading rate(HLR) on the efficiency of eff...Constructed wetlands(CWs) were integrated into an indoor recirculating aquaculture system of obscure puffer(Takifugu obscurus) for effluent treatment. The effect of hydraulic loading rate(HLR) on the efficiency of effluent treatment by CWs was examined for over a month. The CWs were operated under brackish conditions(salinity 7.4–7.6) at 3 different HLRs(0.762, 0.633, and 0.458 m d–1) 3 times, 10 days each. Overall, the CWs exhibited high efficiency in removal of total ammonium nitrogen(by 81.03–92.81%) and nitrite nitrogen(by 99.40%–99.68%). The efficiency of CWs in removal of total ammonium nitrogen, nitrate nitrogen, total Kjeldahl nitrogen, total phosphorous, and total suspended solids(TSS) increased with the decrease of HLR. The CWs operated at the 3 HLRs in a decreasing trend proves to be effective, providing a useful method for effluent treatment in commercial puffer aquaculture systems.展开更多
With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable meth...With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable method for treatment of rural domestic wastewater depends on its efficiency, simplicity, and cost-effectiveness. This study investigated the effects of hydraulic retention time (HRT), temperature, and effluent recycling on the treatment efficiency of an anaerobic filter (AF) reactor. The first round of experimental operations was run for three months with HRTs of one, two, and three days, temperatures of 18℃, 21℃, and 24℃, and no effluent recycling. The second round of experimental operations was conducted for another three months with HRTs of three and four days; temperatures of 30.67℃, 30.57℃, and 26.91 ℃ ; and three effluent recycling ratios of 1:1, 1:2, and 2:1. The first round of operations showed removal rates of 32% to 44% for COD, 30% to 35% for TN, 32% to 36% for NH4-N, 19% to 23% for NO3-N, and 12% to 22% for TE In the second round of operations, the removal rates varied from 75% to 81% for COD, 35% to 41% for TN, 31% to 39% for NH4-N, 30% to 34% for NO3-N, and 41% to 48% for TP. The average gas production rates were 6.72 L/d and 7.26 L/d for the first and second rounds of operations, respectively. The gas production rate increased in the second round of operations as a result of applied effluent recycling. The best removal efficiency was obtained for an optimum HRT of three days, a temperature of 30℃, and an effluent recycling ratio of 2:1. The results show that the removal efficiency of the AF reactor was affected by HRT, temperature, and effluent recycling.展开更多
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u...Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.展开更多
The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a...The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations.展开更多
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi...With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors.展开更多
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in...We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.展开更多
With increasing demand for nonrenewable resources,energy conservation is critical.Efficiency gains allow more work to be performed while maintaining or even decreasing the energy expended in the process.Reducing the e...With increasing demand for nonrenewable resources,energy conservation is critical.Efficiency gains allow more work to be performed while maintaining or even decreasing the energy expended in the process.Reducing the energy consumed by a system results in favorable economic and environmental impact.An apparatus has been developed to measure hydraulic fluid efficiency in a stationary application.The system can be used to develop more efficient fluids,leading to increased work output or decreased energy consumption.展开更多
The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle li...The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs.展开更多
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the...Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.展开更多
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ...The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.展开更多
By providing higher in-use viscosity at elevated operating temperatures,hydraulic fluids with high viscosity index improve the efficiency of the hydraulic system.For mobile hydraulic equipment this efficiency can be q...By providing higher in-use viscosity at elevated operating temperatures,hydraulic fluids with high viscosity index improve the efficiency of the hydraulic system.For mobile hydraulic equipment this efficiency can be quantified as an increase in fuel economy.This paper reviews the research that demonstrates these efficiency advantages in gear,vane and piston pumps and presents a method for predicting the overall fuel economy for a fleet of hydraulic equipment in operation.Finally a `Maximum Efficiency Hydraulic Fluid’ performance definition is presented which will enable an equipment operator to easily improve the performance of the system and reduce fuel consumption.展开更多
In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asym...In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asymmetric trapezoidal flume with a length of 7 m and a width of 0.304 m is considered,with the bottom of the flume transversely inclined at an angle of m=0.296 and vertical lateral sides.The corresponding inflow Froude number is allowed to range in the interval(1.40<F1<6.11).The properties of this jump are compared to those of hydraulic jumps in channels with other types of cross-sections.A relationship for calculating hydraulic jump efficiency is proposed for the considered flume.For F1>5,the hydraulic jump is found to be more effective than that occurring in triangular and symmetric trapezoidal channels.Also,when■mes>8 and■>5,the hydraulic jump in the asymmetrical trapezoidal channel downstream of a parallelogram sluice gate is completely formed as opposed to the situation where a triangular sluice is considered.展开更多
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
Bamboo plants are an essential component of tropical ecosystems,yet their vulnerability to climate extremes,such as drought,is poorly understood due to limited knowledge of their hydraulic properties.Cephalostachyum p...Bamboo plants are an essential component of tropical ecosystems,yet their vulnerability to climate extremes,such as drought,is poorly understood due to limited knowledge of their hydraulic properties.Cephalostachyum pergracile,a commonly used tropical bamboo species,exhibited a substantially higher mortality rate than other co-occurring bamboos during a severe drought event in 2019,but the underlying mechanisms remain unclear.This study investigated the leaf and stem hydraulic traits related to drought responses,including leaf-stem embolism resistance(P50leaf;P50stem) estimated using optical and X-ray microtomography methods,leaf pressure-volume and water-releasing curves.Additionally,we investigated the seasonal water potentials,native embolism level(PLC) and xylem water source using stable isotope.We found that C.pergracile exhibited strong resistance to embolism,showing low P50leaf,P50stem,and turgor loss point,despite its rapid leaf water loss.Interestingly,its leaves displayed greater resistance to embolism than its stem,suggesting a lack of effective hydraulic vulnerability segmentation(HVS) to protect the stem from excessive xylem tension.During the dry season,approximately 49% of the water was absorbed from the upper 20-cm-deep soil layer.Consequently,significant diurnal variation in leaf water potentials and an increase in midday PLC from 5.87±2.33% in the wet season to 12.87±4.09%in the dry season were observed.In summary,this study demonstrated that the rapid leaf water loss,high reliance on surface water,and a lack of effective HVS in C.pergracile accelerated water depletion and increased xylem embolism even in the typical dry season,which may explain its high mortality rate during extreme drought events in 2019.展开更多
Two pot experiments were conducted to study the effects of root pruning at the stem elongation stage on non-hydraulic root-sourced signals (nHRS), drought tolerance and water use efficiency of winter wheat (Triticu...Two pot experiments were conducted to study the effects of root pruning at the stem elongation stage on non-hydraulic root-sourced signals (nHRS), drought tolerance and water use efficiency of winter wheat (Triticum aestivum). The root pruning significantly reduced the root weight of wheat, but had no effect on root/shoot ratio at the two tested stages. At booting stage, specific root respiration of root pruned plants was significantly higher than those with intact roots (1.06 and 0.94 mmol g-1 s-1, respectively). The soil water content (SWC) at which nHRS for root pruned plants appeared was higher and terminated lower than for intact root plants, the threshold range of nHRS was markedly greater for root pruned plants (61.1-44.6% field water capacity) than for intact root plants (57.9-46.1% field water capacity). At flowering stage, while there was no significant difference in specific root respiration. The SWCs at which nHRS appeared and terminated were both higher for root pruned plants than for intact root plants. The values of chlorophyll fluorescence parameters, i.e., the effective photosystem II quantum yield (F PS II ), the maximum photochemical efficiency of PS II (F v /F m ), coefficient of photochemical quenching (qP), and coefficient of non-photochemical quenching (NPQ), in root pruned plants were significantly higher than in intact root plants, 7 d after withholding of water. Root pruned plants had significantly higher water use efficiency (WUE) than intact root plants in well-watered and medium drought soil, but not in severe drought condition. In addition, root pruning had no significant effect on grain yield in well-watered and medium drought soil, but significantly decreased grain yield in severe drought condition. In conclusion, the current study showed that root pruning significantly altered nHRS sensitivity and improved WUE of winter wheat in well-watered and medium drought soil, but lowered drought tolerance of winter wheat in severe drought soil. This suggests a possible direction of drought- resistance breeding and potential agricultural measure to improve WUE of winter wheat under semiarid conditions.展开更多
The construction of fully closed check dam (CD) is a conventional flood prevention mechanism implemented on rivers. Fully closed CDs trap large amounts of sediments in rivers to stabilize the river slopes and control ...The construction of fully closed check dam (CD) is a conventional flood prevention mechanism implemented on rivers. Fully closed CDs trap large amounts of sediments in rivers to stabilize the river slopes and control erosion. However, fully closed CDs cannot selectively trap sediment and may easily overflow, causing them to losing their ability to mediate and hold sediments. Previous studies proposed the concept of “breathable CDs”. The researcher introduced metal slit dam (SD) that could be assembled and disassembled quickly and conveniently. Once a CD reaches maximum capacity, operators must ensure that the water channels of the dam are free from blockage. Moreover, they must inspect the internal accumulation conditions of the dam periodically or immediately following heavy typhoon rains. When necessary, either the sediment buildup in the upriver blockage must be cleared, or the transverse structure of the dam must be removed to allow fine particles to be discharged along with a moderate amount of water. These actions can free up the sediment-storing capacity of the dam for the next heavy typhoon rains. In addition, operators should also inspect the damages inflicted on the dam, such as erosion, wear and tear, and deformation conditions. Damaged components should be disassembled and repaired if possible, or recycled and reused. The present study performed channel tests to simulate closed CDs, SDs, steel pipe dam (SPDs), and steel pipe plus slit dam (SPSDs) for 50-year and 100-year frequency floods. Results were then analyzed to determine the sediment trapping (ST) effects of various CDs, the effects of “adjustable CDs”, and the changes of moderated riverbeds.展开更多
The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determinati...The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.展开更多
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ...The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51575374,U1510206)
文摘Mobile machinery energy efficiency and emission pollution are the national and worldwide issues. This paper contributes in solving these problems by applying a speed variable power source. Unfortunately, almost all of the speed variable systems have the dynamic response problem when the motor starts with full load or heavy load. To address this problem, a hydraulic accumulator is used to balance the load of the power source for assisting starting of the motor and a matching method combined with speed and displacement control of the pump is proposed to improve the energy efficiency and dynamic performance simultaneously under different working conditions. Also, the power source/valve combined control strategy of an independent metering system is designed to realize flow matching of the whole system. Firstly, a test system is established to study the dynamic performance and energy efficiency of the speed variable power source with an auxiliary accumulator. Working performance and energy consumption of the power source under different rotating speeds and different loads are studied. And then, the hydraulic excavator test rig with the proposed system is constructed. Furthermore, the working performance of the excavator with the speed-fixed and speed-variable strategy are studied comparatively. Results show that, compared with fixed-speed strategy, the electric power consumption during the idle period and partial load condition can be reduced about 2.05 kW and 1.37 kW. The energy efficiency of speed variable power source is about 40%-71%, which is higher than that of the fixed-speed power source by 3%–10%.
基金the support of the Marine Renewable Energy Project(No.GHME2016YY02)the National Natural Science Foundation of China(Nos.41376100 and 41706100)+1 种基金the Shandong Provincial Natural Science Key Basic Program(No.ZR2017ZA0202)the Fundamental Research Funds for the Central Universities(No.201564005)
文摘The hydraulic system is the key component in the widely used wave energy converters(WEC).In this paper,we theoretically analyze and describe our investigation of the efficiency of the hydraulic system by simulation and model testing of the combined heaving-buoy WEC.We derive a new governing equation that includes nonlinear hydraulic resistance in the power take-off(PTO).We conducted a physical model experiment based on a 100-kW prototype and applied a hydraulic system with an energy accumulator.The model test results reveal an important parameter related to efficiency with respect to nonlinear hydraulic resistance.We also studied the relationship between the efficiency and the initial conditions.Finally,based on our numerical simulation results,we discuss the effect on efficiency of the gas content of the hydraulic fluid and ways to reduce its impact.
基金supported by the Agriculture Commission and the Sciences and Technology Commission of Shanghai(No.09ZR1429000)Shanghai University Knowledge Service Platform,Shanghai Ocean University aquatic animal breeding center(ZF1206),China
文摘Constructed wetlands(CWs) were integrated into an indoor recirculating aquaculture system of obscure puffer(Takifugu obscurus) for effluent treatment. The effect of hydraulic loading rate(HLR) on the efficiency of effluent treatment by CWs was examined for over a month. The CWs were operated under brackish conditions(salinity 7.4–7.6) at 3 different HLRs(0.762, 0.633, and 0.458 m d–1) 3 times, 10 days each. Overall, the CWs exhibited high efficiency in removal of total ammonium nitrogen(by 81.03–92.81%) and nitrite nitrogen(by 99.40%–99.68%). The efficiency of CWs in removal of total ammonium nitrogen, nitrate nitrogen, total Kjeldahl nitrogen, total phosphorous, and total suspended solids(TSS) increased with the decrease of HLR. The CWs operated at the 3 HLRs in a decreasing trend proves to be effective, providing a useful method for effluent treatment in commercial puffer aquaculture systems.
基金supported by the National Natural Science Foundation of China(Grant No.51078074)the Key Project of the Chinese Ministry of Education(Grant No.308010)
文摘With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable method for treatment of rural domestic wastewater depends on its efficiency, simplicity, and cost-effectiveness. This study investigated the effects of hydraulic retention time (HRT), temperature, and effluent recycling on the treatment efficiency of an anaerobic filter (AF) reactor. The first round of experimental operations was run for three months with HRTs of one, two, and three days, temperatures of 18℃, 21℃, and 24℃, and no effluent recycling. The second round of experimental operations was conducted for another three months with HRTs of three and four days; temperatures of 30.67℃, 30.57℃, and 26.91 ℃ ; and three effluent recycling ratios of 1:1, 1:2, and 2:1. The first round of operations showed removal rates of 32% to 44% for COD, 30% to 35% for TN, 32% to 36% for NH4-N, 19% to 23% for NO3-N, and 12% to 22% for TE In the second round of operations, the removal rates varied from 75% to 81% for COD, 35% to 41% for TN, 31% to 39% for NH4-N, 30% to 34% for NO3-N, and 41% to 48% for TP. The average gas production rates were 6.72 L/d and 7.26 L/d for the first and second rounds of operations, respectively. The gas production rate increased in the second round of operations as a result of applied effluent recycling. The best removal efficiency was obtained for an optimum HRT of three days, a temperature of 30℃, and an effluent recycling ratio of 2:1. The results show that the removal efficiency of the AF reactor was affected by HRT, temperature, and effluent recycling.
基金Dao-Bing Wang was supported by the Beijing Natural Science Foundation Project(No.3222030)the National Natural Science Foundation of China(No.52274002)+1 种基金the PetroChina Science and Technology Innovation Foundation Project(No.2021DQ02-0201)Fu-Jian Zhou was supported by the National Natural Science Foundation of China(No.52174045).
文摘Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.
基金Funding support from Heilongjiang"Open Competition"project(Grant No.DQYT2022-JS-758)is greatly acknowledgedFinancial support from the National Natural Science Foundation of China(Grant Nos.52304025 and 52174025)is acknowledged+1 种基金supports from Northeast Petroleum University and Guangdong Basic and Applied Basic Research Foundationsupport from the Heilongjiang Touyan Innovation Team Program.
文摘The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations.
基金supported by the National Natural Science Foundation of China(Nos.42077243,52209148,and 52079062).
文摘With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors.
基金the Natural Science Foundation of China(11922415,12274471)Guangdong Basic and Applied Basic Research Foundation(2022A1515011168,2019A1515011718,2019A1515011337)the Key Research and Development Program of Guangdong Province,China(2019B110209003).
文摘We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.
文摘With increasing demand for nonrenewable resources,energy conservation is critical.Efficiency gains allow more work to be performed while maintaining or even decreasing the energy expended in the process.Reducing the energy consumed by a system results in favorable economic and environmental impact.An apparatus has been developed to measure hydraulic fluid efficiency in a stationary application.The system can be used to develop more efficient fluids,leading to increased work output or decreased energy consumption.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20246 and 51872108)the Fundamental Research Funds for the Central Universitiesthe Advanced Talents Incubation Program of Hebei University(521100221039)
文摘The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs.
基金Supported by the National Natural Science Foundation of China Project(52274014)Comprehensive Scientific Research Project of China National Offshore Oil Corporation(KJZH-2023-2303)。
文摘Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.
基金funded by the National key R&D Program of China(No.2023YFE0120700)the National Natural Science Foundation of China(No.51934005)+2 种基金the Shaanxi Province 2023 Innovation Capability Support Plan(No.2023KJXX-122)the Technology Innovation Leading Program of Shaanxi(No.2022 PT-08)the Project of Youth Innovation Team of Shaanxi Universities(No.22JP063).
文摘The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.
文摘By providing higher in-use viscosity at elevated operating temperatures,hydraulic fluids with high viscosity index improve the efficiency of the hydraulic system.For mobile hydraulic equipment this efficiency can be quantified as an increase in fuel economy.This paper reviews the research that demonstrates these efficiency advantages in gear,vane and piston pumps and presents a method for predicting the overall fuel economy for a fleet of hydraulic equipment in operation.Finally a `Maximum Efficiency Hydraulic Fluid’ performance definition is presented which will enable an equipment operator to easily improve the performance of the system and reduce fuel consumption.
文摘In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asymmetric trapezoidal flume with a length of 7 m and a width of 0.304 m is considered,with the bottom of the flume transversely inclined at an angle of m=0.296 and vertical lateral sides.The corresponding inflow Froude number is allowed to range in the interval(1.40<F1<6.11).The properties of this jump are compared to those of hydraulic jumps in channels with other types of cross-sections.A relationship for calculating hydraulic jump efficiency is proposed for the considered flume.For F1>5,the hydraulic jump is found to be more effective than that occurring in triangular and symmetric trapezoidal channels.Also,when■mes>8 and■>5,the hydraulic jump in the asymmetrical trapezoidal channel downstream of a parallelogram sluice gate is completely formed as opposed to the situation where a triangular sluice is considered.
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金supported by the National Natural Science Foundation of China(Nos:32071735,32371576,32350410420,41861144016,and 31570406)CAS‘Light of West China’Program+2 种基金The 14th Five-Year Plan of the Xishuangbanna Tropical Botanical Garden,Chinese Academy of Sciences(E3ZKFF1K,E3ZKFF2B)Yunnan Provincial Science and Technology Department(2018HB068)Yunnan Revitalization Talents Support Plan(YNWR-QNBJ-2019177).
文摘Bamboo plants are an essential component of tropical ecosystems,yet their vulnerability to climate extremes,such as drought,is poorly understood due to limited knowledge of their hydraulic properties.Cephalostachyum pergracile,a commonly used tropical bamboo species,exhibited a substantially higher mortality rate than other co-occurring bamboos during a severe drought event in 2019,but the underlying mechanisms remain unclear.This study investigated the leaf and stem hydraulic traits related to drought responses,including leaf-stem embolism resistance(P50leaf;P50stem) estimated using optical and X-ray microtomography methods,leaf pressure-volume and water-releasing curves.Additionally,we investigated the seasonal water potentials,native embolism level(PLC) and xylem water source using stable isotope.We found that C.pergracile exhibited strong resistance to embolism,showing low P50leaf,P50stem,and turgor loss point,despite its rapid leaf water loss.Interestingly,its leaves displayed greater resistance to embolism than its stem,suggesting a lack of effective hydraulic vulnerability segmentation(HVS) to protect the stem from excessive xylem tension.During the dry season,approximately 49% of the water was absorbed from the upper 20-cm-deep soil layer.Consequently,significant diurnal variation in leaf water potentials and an increase in midday PLC from 5.87±2.33% in the wet season to 12.87±4.09%in the dry season were observed.In summary,this study demonstrated that the rapid leaf water loss,high reliance on surface water,and a lack of effective HVS in C.pergracile accelerated water depletion and increased xylem embolism even in the typical dry season,which may explain its high mortality rate during extreme drought events in 2019.
基金supported by the Fund of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,China(10501-1201)the Key Technologies R&D Program of China during the 11th Five-Year Plan period(2012BAD14B08)the Innovation Team Program,Ministry of Education of China
文摘Two pot experiments were conducted to study the effects of root pruning at the stem elongation stage on non-hydraulic root-sourced signals (nHRS), drought tolerance and water use efficiency of winter wheat (Triticum aestivum). The root pruning significantly reduced the root weight of wheat, but had no effect on root/shoot ratio at the two tested stages. At booting stage, specific root respiration of root pruned plants was significantly higher than those with intact roots (1.06 and 0.94 mmol g-1 s-1, respectively). The soil water content (SWC) at which nHRS for root pruned plants appeared was higher and terminated lower than for intact root plants, the threshold range of nHRS was markedly greater for root pruned plants (61.1-44.6% field water capacity) than for intact root plants (57.9-46.1% field water capacity). At flowering stage, while there was no significant difference in specific root respiration. The SWCs at which nHRS appeared and terminated were both higher for root pruned plants than for intact root plants. The values of chlorophyll fluorescence parameters, i.e., the effective photosystem II quantum yield (F PS II ), the maximum photochemical efficiency of PS II (F v /F m ), coefficient of photochemical quenching (qP), and coefficient of non-photochemical quenching (NPQ), in root pruned plants were significantly higher than in intact root plants, 7 d after withholding of water. Root pruned plants had significantly higher water use efficiency (WUE) than intact root plants in well-watered and medium drought soil, but not in severe drought condition. In addition, root pruning had no significant effect on grain yield in well-watered and medium drought soil, but significantly decreased grain yield in severe drought condition. In conclusion, the current study showed that root pruning significantly altered nHRS sensitivity and improved WUE of winter wheat in well-watered and medium drought soil, but lowered drought tolerance of winter wheat in severe drought soil. This suggests a possible direction of drought- resistance breeding and potential agricultural measure to improve WUE of winter wheat under semiarid conditions.
文摘The construction of fully closed check dam (CD) is a conventional flood prevention mechanism implemented on rivers. Fully closed CDs trap large amounts of sediments in rivers to stabilize the river slopes and control erosion. However, fully closed CDs cannot selectively trap sediment and may easily overflow, causing them to losing their ability to mediate and hold sediments. Previous studies proposed the concept of “breathable CDs”. The researcher introduced metal slit dam (SD) that could be assembled and disassembled quickly and conveniently. Once a CD reaches maximum capacity, operators must ensure that the water channels of the dam are free from blockage. Moreover, they must inspect the internal accumulation conditions of the dam periodically or immediately following heavy typhoon rains. When necessary, either the sediment buildup in the upriver blockage must be cleared, or the transverse structure of the dam must be removed to allow fine particles to be discharged along with a moderate amount of water. These actions can free up the sediment-storing capacity of the dam for the next heavy typhoon rains. In addition, operators should also inspect the damages inflicted on the dam, such as erosion, wear and tear, and deformation conditions. Damaged components should be disassembled and repaired if possible, or recycled and reused. The present study performed channel tests to simulate closed CDs, SDs, steel pipe dam (SPDs), and steel pipe plus slit dam (SPSDs) for 50-year and 100-year frequency floods. Results were then analyzed to determine the sediment trapping (ST) effects of various CDs, the effects of “adjustable CDs”, and the changes of moderated riverbeds.
基金supported by the National Natural Science Foundation of China(Grant No.42174118)a research grant(Grant No.ZDJ 2020-7)from the National Institute of Natural Hazards,Ministry of Emergency Management of China.
文摘The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.
基金National Natural Science Foundation of China (51974176, 52174194, 51934004)Shandong Provincial Colleges and Universities Youth Innovation and Technology Support Program (2019KJH006)+1 种基金Taishan Scholars Project (TS20190935)Shandong outstanding youth fund (ZR2020JQ22).
文摘The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.