The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determinati...The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.展开更多
Facial support in slurry shield tunneling is provided by slurry pressure to balance the external earth and water pressure.Hydraulic fracturing may occur and cause a significant decrease in the support pressure if the ...Facial support in slurry shield tunneling is provided by slurry pressure to balance the external earth and water pressure.Hydraulic fracturing may occur and cause a significant decrease in the support pressure if the slurry pressure exceeds the threshold of the soil or rock material,resulting in a serious face collapse accident.Preventing the occurrence of hydraulic fracturing in a slurry shield requires investigating the effects of related influencing factors on the hydraulic fracturing pressure and fracture pattern.In this study,a hydraulic fracturing apparatus was developed to test the slurry-induced fracturing of cohesive soil.The effects of different sample parameters and loading conditions,including types of holes,unconfined compressive strength,slurry viscosity,and axial and circumferential loads,on the fracturing pressure and fracture dip were examined.The results indicate that the fracture dip is mainly affected by the deviator stress.The fracturing pressure increases linearly with the increase in the circumferential pressure,but it is almost independent of the axial pressure.The unconfined compressive strength of soil can reflect its ability to resist fracturing failure.The fracturing pressure increases with an increase in the unconfined compressive strength as well as the slurry viscosity.Based on the test results,an empirical approach was proposed to estimate the fracturing pressure of the soil.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42174118)a research grant(Grant No.ZDJ 2020-7)from the National Institute of Natural Hazards,Ministry of Emergency Management of China.
文摘The hydraulic testing of pre-existing fractures(HTPF)is one of the most promising in situ stress measurement methods,particularly for three-dimensional stress tensor determination.However,the stress tensor determination based on the HTPF method requires at least six tests or a minimum of 14-15 tests(under different conditions)for reliable results.In this study,we modified the HTPF method by considering the shear stress on each pre-existing fracture,which increased the number of equations for the stress tensor determination and decreased the number of tests required.Different shear stresses were attributed to different fractures by random sampling;therefore,the stress tensors were obtained by searching for the optimal solution using the least squares criterion based on the Monte Carlo method.Thereafter,we constrained the stress tensor based on the tensile strength criterion,compressive strength criterion,and vertical stress constraints.The inverted stress tensors were presented and analyzed based on the tensorial nature of the stress using the Euclidean mean stress tensor.Two stress-measurement campaigns in Weifang(Shandong Province,China)and Mercantour road tunnel(France)were implemented to highlight the validity and efficiency of the modified HTPF(M-HTPF)method.The results showed that the M-HTPF method can be applied for stress tensor inversion using only three to four tests on pre-existing fractures,neglecting the stress gradient.The inversion results were confined to relatively small distribution dispersions and were significantly reliable and stable due to the shear stresses on the fractures and the stress constraints employed.The M-HTPF method is highly feasible and efficient for complete stress tensor determination in a single borehole.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.KCA313017533 and C16A300190).
文摘Facial support in slurry shield tunneling is provided by slurry pressure to balance the external earth and water pressure.Hydraulic fracturing may occur and cause a significant decrease in the support pressure if the slurry pressure exceeds the threshold of the soil or rock material,resulting in a serious face collapse accident.Preventing the occurrence of hydraulic fracturing in a slurry shield requires investigating the effects of related influencing factors on the hydraulic fracturing pressure and fracture pattern.In this study,a hydraulic fracturing apparatus was developed to test the slurry-induced fracturing of cohesive soil.The effects of different sample parameters and loading conditions,including types of holes,unconfined compressive strength,slurry viscosity,and axial and circumferential loads,on the fracturing pressure and fracture dip were examined.The results indicate that the fracture dip is mainly affected by the deviator stress.The fracturing pressure increases linearly with the increase in the circumferential pressure,but it is almost independent of the axial pressure.The unconfined compressive strength of soil can reflect its ability to resist fracturing failure.The fracturing pressure increases with an increase in the unconfined compressive strength as well as the slurry viscosity.Based on the test results,an empirical approach was proposed to estimate the fracturing pressure of the soil.