Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,F...Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests.展开更多
The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under th...The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under the loading of rocks.An electrical and mechanics test system was established in this paper to explore the impacts of loading rates on PSCs.The results indicated that PSC curves of different rocks had different change laws under low/high loading rates.When the loading rate was relatively low,PSC curves firstly changed gently and then increased exponentially.Under high loading rates,PSC curves experienced the rapid increase stage,gentle increase stage and sudden change stage.The compressive strength could greatly affect the peak PSC in case of rock failure.The loading rate was a key factor in average PSC.Under low loading rates,the variations of PSCs conformed to the damage charge model of fracture mechanics,while they did not at the fracture moment.Under high loading rates,the PSCs at low stress didn’t fit the model due to the stress impact effects.The experimental results could provide theoretical basis for the influence of loading rates on PSCs.展开更多
The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock durin...The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock during the cyclic loading and unloading is of great signifcance for revealing the formation mechanism of water-conducting pathways in fault and preventing water inrush disasters.In this study,the mechanical and seepage tests of fault rock under the multi-stage cyclic loading and unloading of axial compression were carried out by using the fuid–solid coupling triaxial experimental device.The hysteresis loop of the stress–strain curve,peak strain rate,secant Young's modulus,and permeability of fault rock were obtained,and the evolution law of the dissipated energy of fault rock with the cyclic number of load and unloading was discussed.The experimental results show that with an increase in the cyclic number of loading and unloading,several changes occur.The hysteresis loop of the stress–strain curve of the fault rock shifts towards higher levels of strain.Additionally,both the peak strain rate and the secant Young's modulus of the fault rock increase,resulting in an increase in the secant Young's modulus of the fault rock mass.However,the growth rate of the secant Young's modulus gradually slows down with the increase of cyclic number of loading and unloading.The permeability evolution of fault rock under the multi-stage cyclic loading and unloading of axial compression can be divided into three stages:steady increase stage,cyclic decrease stage,and rapid increase stage.Besides,the calculation model of dissipated energy of fault rock considering the efective stress was established.The calculation results show that the relationship between the dissipated energy of fault rock and the cyclic number of loading and unloading conforms to an exponential function.展开更多
In the last years,shale gas has gradually substituted oil and coal as the main sources of energy in the world.Compared with shallow shale gas reservoirs,deep shale is characterized by low permeability,low porosity,str...In the last years,shale gas has gradually substituted oil and coal as the main sources of energy in the world.Compared with shallow shale gas reservoirs,deep shale is characterized by low permeability,low porosity,strong heterogeneity,and strong anisotropy.In the process of multi-cluster fracturing of horizontal wells,the whole deformation process and destruction modes are significantly influenced by loading rates.In this investigation,the servo press was used to carry out semi-circular bend(SCB)mixedmode fracture experiments in deep shales(130,160,190℃)with prefabricated fractures under different loading rates(0.02,0.05,0.1,0.2 mm/min).The fracture propagation process was monitored using acoustic emission.The deformation characteristics,displacementeload curve,and acoustic emission parameters of shale under different loading rates were studied during the mixed-mode fracture propagation.Our results showed that during the deformation and fracture of the specimen,the acoustic emission energy and charge significantly increased near the stress peak,showing at this point the most intense acoustic emission activity.With the increase in loading rate,the fracture peak load of the deep shale specimen also increased.However,the maximum displacement decreased to different extents.With the increase in temperature,the effective fracture toughness of the deep shale gradually decreased.Also,the maximum displacement decreased.Under different loading rates,the deformation of the prefabricated cracks showed a nonlinear slow growthelinear growth trend.The slope of the linear growth stage increased with the increase in loading rate.In addition,as the loading rate increased,an increase in tension failure and a decrease in shear failure were observed.Moreover,the control chart showing the relationship between tension and the shear failure under different temperatures and loading rates was determined.展开更多
In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results sh...In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio (RwD) was 1.0, the pollutant removal rate increased by (13.6 ± 0.3)% for NH3-N, (20.7 ± 1.1)% for TN, (18.6± 0.4)% for TP, (12.2 ± 0.5)% for BOD, (10.1 ± 0.3)% for COD, and (36.2 ± 1.2)% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water - Water Quality Standard for Scenic Environment Use (GB/T 18921-2002) even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential (ORP), the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the RWD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference (p 〈 0.05) under different RwDS. The suggested RWD was 1.0. Relative contribution of the pretreatment and SWlS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS.展开更多
Constructed wetlands(CWs) were integrated into an indoor recirculating aquaculture system of obscure puffer(Takifugu obscurus) for effluent treatment. The effect of hydraulic loading rate(HLR) on the efficiency of eff...Constructed wetlands(CWs) were integrated into an indoor recirculating aquaculture system of obscure puffer(Takifugu obscurus) for effluent treatment. The effect of hydraulic loading rate(HLR) on the efficiency of effluent treatment by CWs was examined for over a month. The CWs were operated under brackish conditions(salinity 7.4–7.6) at 3 different HLRs(0.762, 0.633, and 0.458 m d–1) 3 times, 10 days each. Overall, the CWs exhibited high efficiency in removal of total ammonium nitrogen(by 81.03–92.81%) and nitrite nitrogen(by 99.40%–99.68%). The efficiency of CWs in removal of total ammonium nitrogen, nitrate nitrogen, total Kjeldahl nitrogen, total phosphorous, and total suspended solids(TSS) increased with the decrease of HLR. The CWs operated at the 3 HLRs in a decreasing trend proves to be effective, providing a useful method for effluent treatment in commercial puffer aquaculture systems.展开更多
Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas.Studies have shown that it is affected by plant factors(species,ages,root geometry,etc.)...Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas.Studies have shown that it is affected by plant factors(species,ages,root geometry,etc.)and soil factors(soil types,soil moisture,soil bulk densities,etc.).However,the effects of loading rates on root pullout performance are not well studied.To explore the mechanical interactions under different loading rates,we conducted pullout tests on Medicago sativa L.and Hippophae rhamnoides L.roots under five loading rates,i.e.,5,50,100,150,and 200 mm/min.In addition,tensile tests were conducted on the roots in diameters of 0.5-2.0 mm to compare the relationship between root tensile properties and root pullout properties.Results showed that two root failure modes,slippage and breakage,were observed during root pullout tests.All M.sativa roots were pulled out,while 72.2%of H.rhamnoides roots were broken.The maximum fracture diameter and fracture root length of H.rhamnoides were 1.22 mm and 7.44 cm under 100 mm/min loading rate,respectively.Root displacement values were 4.63%(±0.43%)and 8.91%(±0.52%)of the total root length for M.sativa and H.rhamnoides,respectively.The values of maximum pullout force were 14.6(±0.7)and 17.7(±1.8)N under 100 mm/min for M.sativa and H.rhamnoides,respectively.Values of the maximum pullout strength for M.sativa and H.rhamnoides were 38.38(±5.48)MPa under 150 mm/min and 12.47(±1.43)MPa under 100 mm/min,respectively.Root-soil friction coefficient under 100 mm/min was significantly larger than those under other loading rates for both the two species.Values of the maximum root pullout energy for M.sativa and H.rhamnoides were 87.83(±21.55)mm•N under 100 mm/min and 173.53(±38.53)mm•N under 200 mm/min,respectively.Root pullout force was significantly related to root diameter(P<0.01).Peak root pullout force was significantly affected by loading rates when the effect of root diameter was included(P<0.01),and vice versa.Except for the failure mode and peak pullout force,other pullout parameters,including root pullout strength,root displacement,root-soil friction coefficient,and root pullout energy were not significantly affected by loading rates(P>0.05).Root pullout strength was greater than root tensile strength for the two species.The results suggested that there was no need to deliberately control loading rate in root pullout tests in the semi-arid soil,and root pullout force and pullout strength could be better parameters for root reinforcement model compared with root tensile strength as root pullout force and pullout strength could more realistically reflect the working state of roots in the semi-arid soil.展开更多
The effects of substrate mingling ratio(SMR)(1:1,1:2,1:3,3:1,and 2:1)and organic loading rate(OLR)(50-90 g total solids per liter per day)on anaerobic co-digestion performance and microbial characteristics were invest...The effects of substrate mingling ratio(SMR)(1:1,1:2,1:3,3:1,and 2:1)and organic loading rate(OLR)(50-90 g total solids per liter per day)on anaerobic co-digestion performance and microbial characteristics were investigated for pig manure(PM)and pretreated/untreated corn stover in batch and semicontinuous anaerobic digestion(AD)system.The results showed that SMR and pretreatment affected co-digestion performance.The maximum cumulative methane yield of 428.5 ml·g^(-1)(based on volatile solids(VS))was obtained for PCP13,which was 35.7%and 40.0%higher than that of CSU and PM.In the first 5 days,the maximum methane yield improvement rate was 378.1%for PCP13.The daily methane yield per gram VS of PCP13 was 11.4%-18.5%higher than that of PC_(U)13.Clostridium_sensu_stricto_1,DMER64,and Bacteroides and Methanosaeta,Methanobacterium,and Methanospirillum had higher relative abundance at the genus level.Therefore,SMR and OLR are important factor affecting the AD process,and OLR can affect methane production through volatile fatty acids.展开更多
The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with differen...The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with different temperatures and strain rates.A series of dynamic spalling tests with different impact velocities were conducted on thermally treated granite at different temperatures.The dynamic spalling strengths of granite with different temperatures and strain rates were determined.A model was proposed to correlate the dynamic spalling strength of granite,high temperature and strain rate.The results show that the spalling strength of granite decreases with increasing temperature.Moreover,the spalling strength of granite with a higher strain rate is larger than that with a lower strain rate.The proposed model can describe the relationship among dynamic spalling strength of granite,high temperature and strain rate.展开更多
Anaerobic treatment model treats fish processing wastewater to be necessary for a small and medium factory that is very popular in Vietnam and other countries.Several techniques have been proposed.However,they are qui...Anaerobic treatment model treats fish processing wastewater to be necessary for a small and medium factory that is very popular in Vietnam and other countries.Several techniques have been proposed.However,they are quite expensive and hard to operate,especially in remote areas.In this study,the hydraulic retention times(HRT)including 3,5,and 7 hours with a various organic loading rate of 1.5 to 6.5 kg COD/m3/day were investigated.Biomass concentration as mix-liquor volatile suspended solid(MLVSS)in the model is at 6,000 to 9,000 mg/L.On the basis of the result the optimal HRT with a 4.0 kg COD/m3/day organic loading rate was 8 hours which BOD5,COD removal efficiency were 92.18,87.36 percent respectively.By the end of the optimal hydraulic retention times,the total methane gas volume as a by-product was collected with 2.6 liters.展开更多
Erosion as a natural process produces soils, which are very important natural resources for the fest land plant- and animal kingdoms. Loss of the soil cover reduces agricultural production, biodiversity, and the role ...Erosion as a natural process produces soils, which are very important natural resources for the fest land plant- and animal kingdoms. Loss of the soil cover reduces agricultural production, biodiversity, and the role of soil as a filter for infiltrating water to replenish the groundwater. It also threatens the food supplies. The knowledge of erosion rates of rocks and terrains is important for developing proactive measures to protect soils from erosion and loss. In this study, erosion rates of catchment areas were calculated based on dams’ catchment extensions and the sediment loads transported by flood flows into dams’ lakes. The study results show that the chemically, via floodwater, transported quantities of materials are negligible compared to the solid materials transported by the water. It calculates erosion rates ranging from 0.013 to 0.212 mm/yr (13 - 212 m/10<sup>6</sup> yr) for the different catchment areas. Erosion rates in Jordan are, generally, higher than those calculated for the different parts of the world ranging from 2.5 to 60 m/10<sup>6</sup> yr. This fact can be explained by the very steep topography, calcareous rock cover of the catchment areas and the barren rock exposures.展开更多
Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×...Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.展开更多
[Objective] The aim was to al eviate the constructed wetland clogging problems and to explore to the effects of hydraulic loading on wetland clogging. [Method] The experiment, through artificial soil columns, simulate...[Objective] The aim was to al eviate the constructed wetland clogging problems and to explore to the effects of hydraulic loading on wetland clogging. [Method] The experiment, through artificial soil columns, simulated vertical flow arti-ficial wetland, set four hydraulic load level at 50, 100, 150 and 200 cm/d, to identify the impact of hydraulic loading on wetland clogging and to explore the factors run-ning threshold. [Result] The results show that the different levels of hydraulic loading have greater impact; in the constructed wetland clogging process under high hy-draulic loading of 200 cm/d, the effective life was only six months, and the single factor can be speculated that the threshold of the hydraulic load should be at 100-150 cm/d; system can last for six months at low hydraulic loading and last for three months at medium hydraulic load. [Conclusion] The research provides references for wetland clogging experiments in future.展开更多
The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitativel...The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitatively analyze the dynamic changes in the coal sample cracks under impact load conditions with different loading rates.The experimental results show that the fractal dimension can quantitatively describe the evolution process of coal fractures under dynamic load.During the dynamic compression process,the evolution of the coal sample cracks presents distinct stages.In the crack propagation stage,the fractal dimension increases rapidly with the progress of loading,and in the crack widening stage,the fractal dimension increases slowly with the progress of loading.The initiation of the crack propagation phase of the coal samples gradually occurs more quickly with increasing loading rate;the initial cracks appear earlier.At the same loading time point,when the loading rate is greater,the fractal dimension of the cracks observed in the coal sample is greater.展开更多
Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock...Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.展开更多
Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the inciden...Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2-4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding.Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing failure.展开更多
The deformation and failure of coal and rock is energy-driving results according to thermodynamics.It is important to study the strain energy characteristics of coal-rock composite samples to better understand the def...The deformation and failure of coal and rock is energy-driving results according to thermodynamics.It is important to study the strain energy characteristics of coal-rock composite samples to better understand the deformation and failure mechanism of of coal-rock composite structures.In this research,laboratory tests and numerical simulation of uniaxial compressions of coal-rock composite samples were carried out with five different loading rates.The test results show that strength,deformation,acoustic emission(AE)and energy evolution of coal-rock composite sample all have obvious loading rate effects.The uniaxial compressive strength and elastic modulus increase with the increase of loading rate.And with the increase of loading rate,the AE energy at the peak strength of coal-rock composites increases first,then decreases,and then increases.With the increase of loading rate,the AE cumulative count first decreases and then increases.And the total absorption energy and dissipation energy of coal-rock composite samples show non-linear increasing trends,while release elastic strain energy increases first and then decreases.The laboratory experiments conducted on coal-rock composite samples were simulated numerically using the particle flow code(PFC).With careful selection of suitable material constitutive models for coal and rock,and accurate estimation and calibration of mechanical parameters of coal-rock composite sample,it was possible to obtain a good agreement between the laboratory experimental and numerical results.This research can provide references for understanding failure of underground coalrock composite structure by using energy related measuring methods.展开更多
Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and thos...Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and those with high dynamic performance typically have low energy efficiency. In this paper, the variants of secondary control(VSC) with power recovery are developed to solve this problem for loading hydraulic driving devices that operate under variable pressure, unlike classical secondary control(CSC) that operates in constant pressure network. Hydrostatic secondary control units are used as the loading components, by which the absorbed mechanical power from the tested device is converted into hydraulic power and then fed back into the tested system through 4 types of feedback passages(FPs). The loading subsystem can operate in constant pressure network, controlled variable pressure network, or the same variable pressure network as that of the tested device by using different FPs. The 4 types of systems are defined, and their key techniques are analyzed, including work principle, simulating the work state of original tested device, static operation points, loading performance, energy efficiency, and control strategy, etc. The important technical merits of the 4 schemes are compared, and 3 of the schemes are selected, designed, simulated using AMESim and evaluated. The researching results show that the investigated systems can simulate the given loads effectively, realize the work conditions of the tested device, and furthermore attain a high power recovery efficiency that ranges from 0.54 to 0.85, even though the 3 schemes have different loading performances and energy efficiencies. This paper proposes several loading schemes that can achieve both high dynamic performance and high power recovery efficiency.展开更多
The effect of loading rate on the dynamic fracture properties and the failure mechanisms of glass fiber-reinforced composite materials under mode I fracture is studied. Dynamic reflective caustic experiments are carr...The effect of loading rate on the dynamic fracture properties and the failure mechanisms of glass fiber-reinforced composite materials under mode I fracture is studied. Dynamic reflective caustic experiments are carried out for two loading rates. By measuring the characteristic dimensions of the shadow spots during the caustic experiments, the dynamic SIFs are calculated for different loading rates. The experimental results indicate that the dynamic fracture toughness Kid increases remarkably with increasing loading rate, and the crack grows faster under the high-velocity impact. Moreover, by examining the crack growth routes and the fracture surfaces, it is shown that the loading rate also greatly affects the failure mechanisms at micro-scale.展开更多
The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temper...The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temperature furnace MTS652.02.The mechanical properties of mudstone with various loading rates are studied under different temperature conditions.The results show that when temperature increases from room temperature to 400℃ and loading rate is less than 0.03 mm/s,the peak strength of mudstone specimen decreases as loading rate increases,while the various peak strengths show significant differences when loading rate exceeds 0.03 mm/s.At room temperature,the elastic modulus decreases at the first time and then increases with loading rate rising.When the temperature is between200 and 400℃,the elastic modulus presents a decreasing trend with increasing loading rate.With increasing the loading rate,the number of fragments in mudstone becomes larger and even the powder is observed in mudstone with higher loading rate.Under high loading rate,the failure mode of mudstone specimens under different temperatures is mainly conical damage.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51879184 and 12172253).
文摘Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests.
基金the State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(No.SKLCRSM22KF011)the National Natural Science Foundation of China(Nos.52130411,52104191,51974120,and 51904103)+1 种基金the Natural Science Foundation of Hunan Province(No.2021JJ40204)the Science and Technology Innovation Program of Hunan Province(No.2020RC3047).
文摘The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under the loading of rocks.An electrical and mechanics test system was established in this paper to explore the impacts of loading rates on PSCs.The results indicated that PSC curves of different rocks had different change laws under low/high loading rates.When the loading rate was relatively low,PSC curves firstly changed gently and then increased exponentially.Under high loading rates,PSC curves experienced the rapid increase stage,gentle increase stage and sudden change stage.The compressive strength could greatly affect the peak PSC in case of rock failure.The loading rate was a key factor in average PSC.Under low loading rates,the variations of PSCs conformed to the damage charge model of fracture mechanics,while they did not at the fracture moment.Under high loading rates,the PSCs at low stress didn’t fit the model due to the stress impact effects.The experimental results could provide theoretical basis for the influence of loading rates on PSCs.
基金supported by the National Science Fund for Excellent Young researchers of Science China(52122404)the National Natural Science Foundation of China(41977238).
文摘The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock during the cyclic loading and unloading is of great signifcance for revealing the formation mechanism of water-conducting pathways in fault and preventing water inrush disasters.In this study,the mechanical and seepage tests of fault rock under the multi-stage cyclic loading and unloading of axial compression were carried out by using the fuid–solid coupling triaxial experimental device.The hysteresis loop of the stress–strain curve,peak strain rate,secant Young's modulus,and permeability of fault rock were obtained,and the evolution law of the dissipated energy of fault rock with the cyclic number of load and unloading was discussed.The experimental results show that with an increase in the cyclic number of loading and unloading,several changes occur.The hysteresis loop of the stress–strain curve of the fault rock shifts towards higher levels of strain.Additionally,both the peak strain rate and the secant Young's modulus of the fault rock increase,resulting in an increase in the secant Young's modulus of the fault rock mass.However,the growth rate of the secant Young's modulus gradually slows down with the increase of cyclic number of loading and unloading.The permeability evolution of fault rock under the multi-stage cyclic loading and unloading of axial compression can be divided into three stages:steady increase stage,cyclic decrease stage,and rapid increase stage.Besides,the calculation model of dissipated energy of fault rock considering the efective stress was established.The calculation results show that the relationship between the dissipated energy of fault rock and the cyclic number of loading and unloading conforms to an exponential function.
基金supported by the National Natural Science Foundation of China(No.52204007)the Natural Science Foundation of Heilongjiang Province of China(YQ2021E005)+1 种基金New Era Longjiang Outstanding Master's and Doctoral Thesis Project(LJYXL2022-002)Key Laboratory of Enhanced Oil and Gas Recovery,Ministry of Education(NEPU-EOR-2022-04).
文摘In the last years,shale gas has gradually substituted oil and coal as the main sources of energy in the world.Compared with shallow shale gas reservoirs,deep shale is characterized by low permeability,low porosity,strong heterogeneity,and strong anisotropy.In the process of multi-cluster fracturing of horizontal wells,the whole deformation process and destruction modes are significantly influenced by loading rates.In this investigation,the servo press was used to carry out semi-circular bend(SCB)mixedmode fracture experiments in deep shales(130,160,190℃)with prefabricated fractures under different loading rates(0.02,0.05,0.1,0.2 mm/min).The fracture propagation process was monitored using acoustic emission.The deformation characteristics,displacementeload curve,and acoustic emission parameters of shale under different loading rates were studied during the mixed-mode fracture propagation.Our results showed that during the deformation and fracture of the specimen,the acoustic emission energy and charge significantly increased near the stress peak,showing at this point the most intense acoustic emission activity.With the increase in loading rate,the fracture peak load of the deep shale specimen also increased.However,the maximum displacement decreased to different extents.With the increase in temperature,the effective fracture toughness of the deep shale gradually decreased.Also,the maximum displacement decreased.Under different loading rates,the deformation of the prefabricated cracks showed a nonlinear slow growthelinear growth trend.The slope of the linear growth stage increased with the increase in loading rate.In addition,as the loading rate increased,an increase in tension failure and a decrease in shear failure were observed.Moreover,the control chart showing the relationship between tension and the shear failure under different temperatures and loading rates was determined.
基金supported by the National Natural Science Foundation of China(Grant No.51108275)the Program for Liaoning Excellent Talents in Universities(LNET)(Grant No.LJQ2012101)+2 种基金the Program for New Century Excellent Talents in Universities(Grant No.NCET-11-1012)the Science and Technology Program of Liaoning Province(Grants No.2011229002 and2013229012)the Basic Science Research Fund in Northeastern University(Grants No.N130501001 and N140105003)
文摘In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio (RwD) was 1.0, the pollutant removal rate increased by (13.6 ± 0.3)% for NH3-N, (20.7 ± 1.1)% for TN, (18.6± 0.4)% for TP, (12.2 ± 0.5)% for BOD, (10.1 ± 0.3)% for COD, and (36.2 ± 1.2)% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water - Water Quality Standard for Scenic Environment Use (GB/T 18921-2002) even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential (ORP), the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the RWD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference (p 〈 0.05) under different RwDS. The suggested RWD was 1.0. Relative contribution of the pretreatment and SWlS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS.
基金supported by the Agriculture Commission and the Sciences and Technology Commission of Shanghai(No.09ZR1429000)Shanghai University Knowledge Service Platform,Shanghai Ocean University aquatic animal breeding center(ZF1206),China
文摘Constructed wetlands(CWs) were integrated into an indoor recirculating aquaculture system of obscure puffer(Takifugu obscurus) for effluent treatment. The effect of hydraulic loading rate(HLR) on the efficiency of effluent treatment by CWs was examined for over a month. The CWs were operated under brackish conditions(salinity 7.4–7.6) at 3 different HLRs(0.762, 0.633, and 0.458 m d–1) 3 times, 10 days each. Overall, the CWs exhibited high efficiency in removal of total ammonium nitrogen(by 81.03–92.81%) and nitrite nitrogen(by 99.40%–99.68%). The efficiency of CWs in removal of total ammonium nitrogen, nitrate nitrogen, total Kjeldahl nitrogen, total phosphorous, and total suspended solids(TSS) increased with the decrease of HLR. The CWs operated at the 3 HLRs in a decreasing trend proves to be effective, providing a useful method for effluent treatment in commercial puffer aquaculture systems.
基金supported by the Natural Science Foundation of Shanxi Province of China(20210302123105)the Shanxi Scholarship Council of China(2020-054)the Changjiang River Scientific Research Institute(CRSRI)Open Research Program(CKWV20221006/KY).
文摘Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas.Studies have shown that it is affected by plant factors(species,ages,root geometry,etc.)and soil factors(soil types,soil moisture,soil bulk densities,etc.).However,the effects of loading rates on root pullout performance are not well studied.To explore the mechanical interactions under different loading rates,we conducted pullout tests on Medicago sativa L.and Hippophae rhamnoides L.roots under five loading rates,i.e.,5,50,100,150,and 200 mm/min.In addition,tensile tests were conducted on the roots in diameters of 0.5-2.0 mm to compare the relationship between root tensile properties and root pullout properties.Results showed that two root failure modes,slippage and breakage,were observed during root pullout tests.All M.sativa roots were pulled out,while 72.2%of H.rhamnoides roots were broken.The maximum fracture diameter and fracture root length of H.rhamnoides were 1.22 mm and 7.44 cm under 100 mm/min loading rate,respectively.Root displacement values were 4.63%(±0.43%)and 8.91%(±0.52%)of the total root length for M.sativa and H.rhamnoides,respectively.The values of maximum pullout force were 14.6(±0.7)and 17.7(±1.8)N under 100 mm/min for M.sativa and H.rhamnoides,respectively.Values of the maximum pullout strength for M.sativa and H.rhamnoides were 38.38(±5.48)MPa under 150 mm/min and 12.47(±1.43)MPa under 100 mm/min,respectively.Root-soil friction coefficient under 100 mm/min was significantly larger than those under other loading rates for both the two species.Values of the maximum root pullout energy for M.sativa and H.rhamnoides were 87.83(±21.55)mm•N under 100 mm/min and 173.53(±38.53)mm•N under 200 mm/min,respectively.Root pullout force was significantly related to root diameter(P<0.01).Peak root pullout force was significantly affected by loading rates when the effect of root diameter was included(P<0.01),and vice versa.Except for the failure mode and peak pullout force,other pullout parameters,including root pullout strength,root displacement,root-soil friction coefficient,and root pullout energy were not significantly affected by loading rates(P>0.05).Root pullout strength was greater than root tensile strength for the two species.The results suggested that there was no need to deliberately control loading rate in root pullout tests in the semi-arid soil,and root pullout force and pullout strength could be better parameters for root reinforcement model compared with root tensile strength as root pullout force and pullout strength could more realistically reflect the working state of roots in the semi-arid soil.
基金the fund supports from the Fundamental Research Funds for the Central Universities(JD2326).
文摘The effects of substrate mingling ratio(SMR)(1:1,1:2,1:3,3:1,and 2:1)and organic loading rate(OLR)(50-90 g total solids per liter per day)on anaerobic co-digestion performance and microbial characteristics were investigated for pig manure(PM)and pretreated/untreated corn stover in batch and semicontinuous anaerobic digestion(AD)system.The results showed that SMR and pretreatment affected co-digestion performance.The maximum cumulative methane yield of 428.5 ml·g^(-1)(based on volatile solids(VS))was obtained for PCP13,which was 35.7%and 40.0%higher than that of CSU and PM.In the first 5 days,the maximum methane yield improvement rate was 378.1%for PCP13.The daily methane yield per gram VS of PCP13 was 11.4%-18.5%higher than that of PC_(U)13.Clostridium_sensu_stricto_1,DMER64,and Bacteroides and Methanosaeta,Methanobacterium,and Methanospirillum had higher relative abundance at the genus level.Therefore,SMR and OLR are important factor affecting the AD process,and OLR can affect methane production through volatile fatty acids.
基金supported by the Beijing Natural Science Foundation,China(Grant No.JQ20039)National Natural Science Foundation of China(Grant No.12172019).
文摘The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with different temperatures and strain rates.A series of dynamic spalling tests with different impact velocities were conducted on thermally treated granite at different temperatures.The dynamic spalling strengths of granite with different temperatures and strain rates were determined.A model was proposed to correlate the dynamic spalling strength of granite,high temperature and strain rate.The results show that the spalling strength of granite decreases with increasing temperature.Moreover,the spalling strength of granite with a higher strain rate is larger than that with a lower strain rate.The proposed model can describe the relationship among dynamic spalling strength of granite,high temperature and strain rate.
文摘Anaerobic treatment model treats fish processing wastewater to be necessary for a small and medium factory that is very popular in Vietnam and other countries.Several techniques have been proposed.However,they are quite expensive and hard to operate,especially in remote areas.In this study,the hydraulic retention times(HRT)including 3,5,and 7 hours with a various organic loading rate of 1.5 to 6.5 kg COD/m3/day were investigated.Biomass concentration as mix-liquor volatile suspended solid(MLVSS)in the model is at 6,000 to 9,000 mg/L.On the basis of the result the optimal HRT with a 4.0 kg COD/m3/day organic loading rate was 8 hours which BOD5,COD removal efficiency were 92.18,87.36 percent respectively.By the end of the optimal hydraulic retention times,the total methane gas volume as a by-product was collected with 2.6 liters.
文摘Erosion as a natural process produces soils, which are very important natural resources for the fest land plant- and animal kingdoms. Loss of the soil cover reduces agricultural production, biodiversity, and the role of soil as a filter for infiltrating water to replenish the groundwater. It also threatens the food supplies. The knowledge of erosion rates of rocks and terrains is important for developing proactive measures to protect soils from erosion and loss. In this study, erosion rates of catchment areas were calculated based on dams’ catchment extensions and the sediment loads transported by flood flows into dams’ lakes. The study results show that the chemically, via floodwater, transported quantities of materials are negligible compared to the solid materials transported by the water. It calculates erosion rates ranging from 0.013 to 0.212 mm/yr (13 - 212 m/10<sup>6</sup> yr) for the different catchment areas. Erosion rates in Jordan are, generally, higher than those calculated for the different parts of the world ranging from 2.5 to 60 m/10<sup>6</sup> yr. This fact can be explained by the very steep topography, calcareous rock cover of the catchment areas and the barren rock exposures.
基金Projects(50874045,51301194)supported by the National Natural Science Foundation of ChinaProject(2144057)supported by the Beijing Natural Science Foundation,China
文摘Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.
基金Supported by National Natural Science Foundation of China(41071214)~~
文摘[Objective] The aim was to al eviate the constructed wetland clogging problems and to explore to the effects of hydraulic loading on wetland clogging. [Method] The experiment, through artificial soil columns, simulated vertical flow arti-ficial wetland, set four hydraulic load level at 50, 100, 150 and 200 cm/d, to identify the impact of hydraulic loading on wetland clogging and to explore the factors run-ning threshold. [Result] The results show that the different levels of hydraulic loading have greater impact; in the constructed wetland clogging process under high hy-draulic loading of 200 cm/d, the effective life was only six months, and the single factor can be speculated that the threshold of the hydraulic load should be at 100-150 cm/d; system can last for six months at low hydraulic loading and last for three months at medium hydraulic load. [Conclusion] The research provides references for wetland clogging experiments in future.
基金Projects(51822403,51827901)supported by the National Natural Science Foundation of ChinaProject(2019ZT08G315)supported by the Department of Science and Technology of Guangdong Province,China。
文摘The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitatively analyze the dynamic changes in the coal sample cracks under impact load conditions with different loading rates.The experimental results show that the fractal dimension can quantitatively describe the evolution process of coal fractures under dynamic load.During the dynamic compression process,the evolution of the coal sample cracks presents distinct stages.In the crack propagation stage,the fractal dimension increases rapidly with the progress of loading,and in the crack widening stage,the fractal dimension increases slowly with the progress of loading.The initiation of the crack propagation phase of the coal samples gradually occurs more quickly with increasing loading rate;the initial cracks appear earlier.At the same loading time point,when the loading rate is greater,the fractal dimension of the cracks observed in the coal sample is greater.
基金Project(2014QNB31)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(51674248)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.
基金the Science and Technology authority of Taiwan, China, for financially supporting this research under Grant No.NSC 102-2221-E-027-071-MY3
文摘Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2-4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding.Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing failure.
基金Projects(51774196,51804181,51874190)supported by the National Natural Science Foundation of ChinaProject(2019GSF111020)supported by the Key R&D Program of Shandong Province,ChinaProject(201908370205)supported by the China Scholarship Council。
文摘The deformation and failure of coal and rock is energy-driving results according to thermodynamics.It is important to study the strain energy characteristics of coal-rock composite samples to better understand the deformation and failure mechanism of of coal-rock composite structures.In this research,laboratory tests and numerical simulation of uniaxial compressions of coal-rock composite samples were carried out with five different loading rates.The test results show that strength,deformation,acoustic emission(AE)and energy evolution of coal-rock composite sample all have obvious loading rate effects.The uniaxial compressive strength and elastic modulus increase with the increase of loading rate.And with the increase of loading rate,the AE energy at the peak strength of coal-rock composites increases first,then decreases,and then increases.With the increase of loading rate,the AE cumulative count first decreases and then increases.And the total absorption energy and dissipation energy of coal-rock composite samples show non-linear increasing trends,while release elastic strain energy increases first and then decreases.The laboratory experiments conducted on coal-rock composite samples were simulated numerically using the particle flow code(PFC).With careful selection of suitable material constitutive models for coal and rock,and accurate estimation and calibration of mechanical parameters of coal-rock composite sample,it was possible to obtain a good agreement between the laboratory experimental and numerical results.This research can provide references for understanding failure of underground coalrock composite structure by using energy related measuring methods.
文摘Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and those with high dynamic performance typically have low energy efficiency. In this paper, the variants of secondary control(VSC) with power recovery are developed to solve this problem for loading hydraulic driving devices that operate under variable pressure, unlike classical secondary control(CSC) that operates in constant pressure network. Hydrostatic secondary control units are used as the loading components, by which the absorbed mechanical power from the tested device is converted into hydraulic power and then fed back into the tested system through 4 types of feedback passages(FPs). The loading subsystem can operate in constant pressure network, controlled variable pressure network, or the same variable pressure network as that of the tested device by using different FPs. The 4 types of systems are defined, and their key techniques are analyzed, including work principle, simulating the work state of original tested device, static operation points, loading performance, energy efficiency, and control strategy, etc. The important technical merits of the 4 schemes are compared, and 3 of the schemes are selected, designed, simulated using AMESim and evaluated. The researching results show that the investigated systems can simulate the given loads effectively, realize the work conditions of the tested device, and furthermore attain a high power recovery efficiency that ranges from 0.54 to 0.85, even though the 3 schemes have different loading performances and energy efficiencies. This paper proposes several loading schemes that can achieve both high dynamic performance and high power recovery efficiency.
基金supported by the National Natural Science Foundation of China (No.10672002).
文摘The effect of loading rate on the dynamic fracture properties and the failure mechanisms of glass fiber-reinforced composite materials under mode I fracture is studied. Dynamic reflective caustic experiments are carried out for two loading rates. By measuring the characteristic dimensions of the shadow spots during the caustic experiments, the dynamic SIFs are calculated for different loading rates. The experimental results indicate that the dynamic fracture toughness Kid increases remarkably with increasing loading rate, and the crack grows faster under the high-velocity impact. Moreover, by examining the crack growth routes and the fracture surfaces, it is shown that the loading rate also greatly affects the failure mechanisms at micro-scale.
基金supported by the National Natural Science Foundation of China(Nos.51104128,51322401,51304201 and 51204159)Jiangsu Province Prospective industry-UniversityResearch Cooperation Research Program of China(No.BY2012085)+2 种基金Doctor Station Fund of China(No.20120095110013)333 Project Program of Jiangsu Province of China"Blue Project" Program of Jiangsu Province of China
文摘The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temperature furnace MTS652.02.The mechanical properties of mudstone with various loading rates are studied under different temperature conditions.The results show that when temperature increases from room temperature to 400℃ and loading rate is less than 0.03 mm/s,the peak strength of mudstone specimen decreases as loading rate increases,while the various peak strengths show significant differences when loading rate exceeds 0.03 mm/s.At room temperature,the elastic modulus decreases at the first time and then increases with loading rate rising.When the temperature is between200 and 400℃,the elastic modulus presents a decreasing trend with increasing loading rate.With increasing the loading rate,the number of fragments in mudstone becomes larger and even the powder is observed in mudstone with higher loading rate.Under high loading rate,the failure mode of mudstone specimens under different temperatures is mainly conical damage.