With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable meth...With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable method for treatment of rural domestic wastewater depends on its efficiency, simplicity, and cost-effectiveness. This study investigated the effects of hydraulic retention time (HRT), temperature, and effluent recycling on the treatment efficiency of an anaerobic filter (AF) reactor. The first round of experimental operations was run for three months with HRTs of one, two, and three days, temperatures of 18℃, 21℃, and 24℃, and no effluent recycling. The second round of experimental operations was conducted for another three months with HRTs of three and four days; temperatures of 30.67℃, 30.57℃, and 26.91 ℃ ; and three effluent recycling ratios of 1:1, 1:2, and 2:1. The first round of operations showed removal rates of 32% to 44% for COD, 30% to 35% for TN, 32% to 36% for NH4-N, 19% to 23% for NO3-N, and 12% to 22% for TE In the second round of operations, the removal rates varied from 75% to 81% for COD, 35% to 41% for TN, 31% to 39% for NH4-N, 30% to 34% for NO3-N, and 41% to 48% for TP. The average gas production rates were 6.72 L/d and 7.26 L/d for the first and second rounds of operations, respectively. The gas production rate increased in the second round of operations as a result of applied effluent recycling. The best removal efficiency was obtained for an optimum HRT of three days, a temperature of 30℃, and an effluent recycling ratio of 2:1. The results show that the removal efficiency of the AF reactor was affected by HRT, temperature, and effluent recycling.展开更多
The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated.The simulated AMD was highly acidic (pH 2.5), rich in iron (...The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated.The simulated AMD was highly acidic (pH 2.5), rich in iron (about 1700 mg/L) and copper (about 200 mg/L), and contained high concentrations of sulfate (about 4700 mg/L).The biooxidation of ferrous iron was studied in a laboratory-scale upflow packed bed bioreactor (PBR).The HRT was shortened stepwise from 40 h to 20 h, 13 h, and 8 h under the acidic environment at a pH value of 2.2.Then, the influent pH value was changed from 2.2 to 1.2 at a constant suitable HRT.Physiochemical and microbial community structure analyses were performed on water samples and stuffing collected from the bioreactor under different conditions.The results indicate that the efficiency of ferrous iron oxidation gradually decreased with the decrease of HRT, and when the HRT exceeded 13 h, ferrous iron in AMD was almost completely oxidized.In addition, the best efficiency of ferrous iron oxidation was achieved at the influent pH value of 1.8.Microbial community structure analyses show that Leptospirillum is the predominant genus attached in the bioreactor, and low influent pH values are suitable for the growth of Leptospirillum.展开更多
Based on the microorganism kinetic model, the formula for computing hydraulic retention time in a membrane bioreactor system (MBR) is derived. With considering HRT as an evaluation index a combinational approach was u...Based on the microorganism kinetic model, the formula for computing hydraulic retention time in a membrane bioreactor system (MBR) is derived. With considering HRT as an evaluation index a combinational approach was used to discuss factors which have an effect on MBR. As a result, the influencing factors were listed in order from strength to weakness as: maximum specific removal rate K , saturation constant K s, maintenance coefficient m , maximum specific growth rate μ m and observed yield coefficient Y obs . Moreover, the formula was simplified, whose parameters were experimentally determined in petrochemical wastewater treatment. The simplified formula is θ=1.1(1/β-1)(K s +S)/KX 0, for petrochemical wastewater treatment K and K s equaled 0 185 and 154.2, respectively.展开更多
In this bench scale submerged membrane bioreactor, effect of solid retention time and hydraulic retention time on membrane fouling propensity has been studied. This experiment is carried out at different solid retenti...In this bench scale submerged membrane bioreactor, effect of solid retention time and hydraulic retention time on membrane fouling propensity has been studied. This experiment is carried out at different solid retention time of 5, 10, 30, 70 and 98 days; and fouling behavior of membrane bioreactor is investigated. Average effluent quality is found to be 88.14%-94.38%. The experiment with different hydraulic retention is carried for 3 to 4 days and fouling behavior has been investigated. The effluent quality at different hydraulic retention time of 1, 2, 3, 5, 10 and 24 hours has been investigated. This paper aims to search optimal values of solid and hydraulic retention times at which lower fouling and higher organic removal efficiency can be obtained. This study has been mainly focused on operating parameters rather than microbial structure, effect and analysis of activated sludge to membrane fouling.展开更多
In this study,the influence of hydraulic retention time on feasibility,efficiency and membrane foul- ing of slightly polluted surface water treatment by a high concentration PAC-MF bioreactor were investigated. During...In this study,the influence of hydraulic retention time on feasibility,efficiency and membrane foul- ing of slightly polluted surface water treatment by a high concentration PAC-MF bioreactor were investigated. During three months operation,TOC,NH4 + -N,nitrobenzene,and TMP were measured to evaluate the MBR performance. The results show that,when HRT reduces from 3 h to 1 h,removal efficiency of TOC and ammonia-nitrite decrease a little. However,there is little effect of HRT on nitrobenzene. And the optimal hydraulic retention time is 1 h.展开更多
Anaerobic treatment model treats fish processing wastewater to be necessary for a small and medium factory that is very popular in Vietnam and other countries.Several techniques have been proposed.However,they are qui...Anaerobic treatment model treats fish processing wastewater to be necessary for a small and medium factory that is very popular in Vietnam and other countries.Several techniques have been proposed.However,they are quite expensive and hard to operate,especially in remote areas.In this study,the hydraulic retention times(HRT)including 3,5,and 7 hours with a various organic loading rate of 1.5 to 6.5 kg COD/m3/day were investigated.Biomass concentration as mix-liquor volatile suspended solid(MLVSS)in the model is at 6,000 to 9,000 mg/L.On the basis of the result the optimal HRT with a 4.0 kg COD/m3/day organic loading rate was 8 hours which BOD5,COD removal efficiency were 92.18,87.36 percent respectively.By the end of the optimal hydraulic retention times,the total methane gas volume as a by-product was collected with 2.6 liters.展开更多
The optimal operation conditions in an anoxic sulfide oxidizing (ASO) bioreactor were investigated. The maximal removal rates for sulfide and nitrate were found to be 4.18 kg/(m3·d) and 1.73 kg/(m3·d), respe...The optimal operation conditions in an anoxic sulfide oxidizing (ASO) bioreactor were investigated. The maximal removal rates for sulfide and nitrate were found to be 4.18 kg/(m3·d) and 1.73 kg/(m3·d), respectively. The volumetrical volumetric loading rates (LRs) observed through decreasing hydraulic retention time (HRT) at fixed substrate concentration are higher than those by increasing substrate concentration at fixed HRT. The sulfide oxidation in ASO reactor was partially producing both sulfate and sulfur; but the amount of sulfate produced was approximately one third that of sulfur. The process was able to tolerate high sulfide concentration, as the sulfide removal percentage always remained near 99% when influent concentration was up to 580 mg/L. It tolerated relatively lower nitrate concentration because the removal percentage dropped to 85% when influent con- centration was increased above 110 mg/L. The process can tolerate shorter HRT but careful operation is needed. Nitrate conversion was more sensitive to HRT than sulfide conversion since the process performance deteriorated abruptly when HRT was decreased from 3.12 h to 2.88 h. In order to avoid nitrite accumulation in the reactor, the influent sulfide and nitrate concentrations should be kept at 280 mg/L and 67.5 mg/L respectively. Present biotechnology is useful for removing sulfides from sewers and crude oil.展开更多
A cost sensitivity analysis was performed for an industrial membrane bioreactor to quantify the effects of hydraulic retention times and related operational parameters on cost.Different hydraulic retention times(72-24...A cost sensitivity analysis was performed for an industrial membrane bioreactor to quantify the effects of hydraulic retention times and related operational parameters on cost.Different hydraulic retention times(72-24 h)were subjected to a flat-sheet membrane bioreactor updated from an existing 72 h oxidation ditch treating antibiotic production wastewater.Field experimental data from the membrane bioreactor,both full-scale(500 m/d)and pilot(1.0 m3/d),were used to calculate the net present value(NPV),incorporating both capital expenditure(CAPEX)and operating expenditure.The results showed that the tank cost was estimated above membrane cost in the 38.2%,where capital expenditure contributed 24.2%more than operational expenditure.Tank construction cost was decisive in determining the net present value contributed 62.1%to the capital expenditure.The membrane bioreactor has the advantage of a longer lifespan flat-sheet membrane,while flux decline was tolerable.The antibiotics decreased to 1.87±0.33 mg/L in the MBR effluent.The upgrade to the membrane bioreactor also benefited further treatments by 10.1%-44.7%lower direct investment.展开更多
The risks posed by algal blooms caused by nitrogen and phosphorus in reclaimed water used in urban water landscapes need to be carefully controlled.In this study,the combined effects of the nitrogen and phosphorus con...The risks posed by algal blooms caused by nitrogen and phosphorus in reclaimed water used in urban water landscapes need to be carefully controlled.In this study,the combined effects of the nitrogen and phosphorus concentrations and the light intensity and temperature on the specific growth rates of algae were determined using Monod,Steele,and Arrhenius models,then an integrated algal growth model was developed.The algae biomass,nitrogen concentration,and phosphorus concentration mass balance equations were used to establish a new control model describing the nitrogen and phosphorus concentration and hydraulic retention time thresholds for algal blooms.The model parameters were determined by fitting the models to data acquired experimentally.Finally,the control model and numerical simulations for six typical algae and mixed algae under standard conditions were used to determine nitrogen/phosphorus concentration and hydraulic retention time thresholds for landscape water to which reclaimed water is supplied(i.e.,for a reclaimed water landscape).展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51078074)the Key Project of the Chinese Ministry of Education(Grant No.308010)
文摘With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable method for treatment of rural domestic wastewater depends on its efficiency, simplicity, and cost-effectiveness. This study investigated the effects of hydraulic retention time (HRT), temperature, and effluent recycling on the treatment efficiency of an anaerobic filter (AF) reactor. The first round of experimental operations was run for three months with HRTs of one, two, and three days, temperatures of 18℃, 21℃, and 24℃, and no effluent recycling. The second round of experimental operations was conducted for another three months with HRTs of three and four days; temperatures of 30.67℃, 30.57℃, and 26.91 ℃ ; and three effluent recycling ratios of 1:1, 1:2, and 2:1. The first round of operations showed removal rates of 32% to 44% for COD, 30% to 35% for TN, 32% to 36% for NH4-N, 19% to 23% for NO3-N, and 12% to 22% for TE In the second round of operations, the removal rates varied from 75% to 81% for COD, 35% to 41% for TN, 31% to 39% for NH4-N, 30% to 34% for NO3-N, and 41% to 48% for TP. The average gas production rates were 6.72 L/d and 7.26 L/d for the first and second rounds of operations, respectively. The gas production rate increased in the second round of operations as a result of applied effluent recycling. The best removal efficiency was obtained for an optimum HRT of three days, a temperature of 30℃, and an effluent recycling ratio of 2:1. The results show that the removal efficiency of the AF reactor was affected by HRT, temperature, and effluent recycling.
基金supported by the National Natural Science Foundation of China(Grant No.U1402234)the Guangxi Scientific Research and Technology Development Plan(Grants No.GuikeAB16380287 and GuikeAB17129025)+2 种基金the Public Welfare Fund of the Ministry of Environmental Protection of China(Grant No.201509049)the Program of International S & T Cooperation(Grant No.2016YFE0130700)the Fund of the General Research Institute for Nonferrous Metals(Grants No.53321 and 53348)
文摘The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated.The simulated AMD was highly acidic (pH 2.5), rich in iron (about 1700 mg/L) and copper (about 200 mg/L), and contained high concentrations of sulfate (about 4700 mg/L).The biooxidation of ferrous iron was studied in a laboratory-scale upflow packed bed bioreactor (PBR).The HRT was shortened stepwise from 40 h to 20 h, 13 h, and 8 h under the acidic environment at a pH value of 2.2.Then, the influent pH value was changed from 2.2 to 1.2 at a constant suitable HRT.Physiochemical and microbial community structure analyses were performed on water samples and stuffing collected from the bioreactor under different conditions.The results indicate that the efficiency of ferrous iron oxidation gradually decreased with the decrease of HRT, and when the HRT exceeded 13 h, ferrous iron in AMD was almost completely oxidized.In addition, the best efficiency of ferrous iron oxidation was achieved at the influent pH value of 1.8.Microbial community structure analyses show that Leptospirillum is the predominant genus attached in the bioreactor, and low influent pH values are suitable for the growth of Leptospirillum.
文摘Based on the microorganism kinetic model, the formula for computing hydraulic retention time in a membrane bioreactor system (MBR) is derived. With considering HRT as an evaluation index a combinational approach was used to discuss factors which have an effect on MBR. As a result, the influencing factors were listed in order from strength to weakness as: maximum specific removal rate K , saturation constant K s, maintenance coefficient m , maximum specific growth rate μ m and observed yield coefficient Y obs . Moreover, the formula was simplified, whose parameters were experimentally determined in petrochemical wastewater treatment. The simplified formula is θ=1.1(1/β-1)(K s +S)/KX 0, for petrochemical wastewater treatment K and K s equaled 0 185 and 154.2, respectively.
文摘In this bench scale submerged membrane bioreactor, effect of solid retention time and hydraulic retention time on membrane fouling propensity has been studied. This experiment is carried out at different solid retention time of 5, 10, 30, 70 and 98 days; and fouling behavior of membrane bioreactor is investigated. Average effluent quality is found to be 88.14%-94.38%. The experiment with different hydraulic retention is carried for 3 to 4 days and fouling behavior has been investigated. The effluent quality at different hydraulic retention time of 1, 2, 3, 5, 10 and 24 hours has been investigated. This paper aims to search optimal values of solid and hydraulic retention times at which lower fouling and higher organic removal efficiency can be obtained. This study has been mainly focused on operating parameters rather than microbial structure, effect and analysis of activated sludge to membrane fouling.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50978068)International Science and Technology Cooperation Project (China,Japan and Korea) (Grant No.2010DFA92460)China National Water Pollution Control and Management Technology of Major Project (Grant No.2009ZX07424-005)
文摘In this study,the influence of hydraulic retention time on feasibility,efficiency and membrane foul- ing of slightly polluted surface water treatment by a high concentration PAC-MF bioreactor were investigated. During three months operation,TOC,NH4 + -N,nitrobenzene,and TMP were measured to evaluate the MBR performance. The results show that,when HRT reduces from 3 h to 1 h,removal efficiency of TOC and ammonia-nitrite decrease a little. However,there is little effect of HRT on nitrobenzene. And the optimal hydraulic retention time is 1 h.
文摘Anaerobic treatment model treats fish processing wastewater to be necessary for a small and medium factory that is very popular in Vietnam and other countries.Several techniques have been proposed.However,they are quite expensive and hard to operate,especially in remote areas.In this study,the hydraulic retention times(HRT)including 3,5,and 7 hours with a various organic loading rate of 1.5 to 6.5 kg COD/m3/day were investigated.Biomass concentration as mix-liquor volatile suspended solid(MLVSS)in the model is at 6,000 to 9,000 mg/L.On the basis of the result the optimal HRT with a 4.0 kg COD/m3/day organic loading rate was 8 hours which BOD5,COD removal efficiency were 92.18,87.36 percent respectively.By the end of the optimal hydraulic retention times,the total methane gas volume as a by-product was collected with 2.6 liters.
基金Project supported by the National Natural Science Foundation of China (No. 30070017)the Science and Technology Foundation for Key Project of Zhejiang Province (No. 2003C13005), China
文摘The optimal operation conditions in an anoxic sulfide oxidizing (ASO) bioreactor were investigated. The maximal removal rates for sulfide and nitrate were found to be 4.18 kg/(m3·d) and 1.73 kg/(m3·d), respectively. The volumetrical volumetric loading rates (LRs) observed through decreasing hydraulic retention time (HRT) at fixed substrate concentration are higher than those by increasing substrate concentration at fixed HRT. The sulfide oxidation in ASO reactor was partially producing both sulfate and sulfur; but the amount of sulfate produced was approximately one third that of sulfur. The process was able to tolerate high sulfide concentration, as the sulfide removal percentage always remained near 99% when influent concentration was up to 580 mg/L. It tolerated relatively lower nitrate concentration because the removal percentage dropped to 85% when influent con- centration was increased above 110 mg/L. The process can tolerate shorter HRT but careful operation is needed. Nitrate conversion was more sensitive to HRT than sulfide conversion since the process performance deteriorated abruptly when HRT was decreased from 3.12 h to 2.88 h. In order to avoid nitrite accumulation in the reactor, the influent sulfide and nitrate concentrations should be kept at 280 mg/L and 67.5 mg/L respectively. Present biotechnology is useful for removing sulfides from sewers and crude oil.
基金This work was supported by the National Key Research and Development Program of China(No.2016YFD0501405)National Natural Science Foundation of China(Grant No.21677161)Major Science&Technology Program for Water Pollution Control and Treatment of China(Nos.2017ZX07102-002 and 2018ZX07105-001).
文摘A cost sensitivity analysis was performed for an industrial membrane bioreactor to quantify the effects of hydraulic retention times and related operational parameters on cost.Different hydraulic retention times(72-24 h)were subjected to a flat-sheet membrane bioreactor updated from an existing 72 h oxidation ditch treating antibiotic production wastewater.Field experimental data from the membrane bioreactor,both full-scale(500 m/d)and pilot(1.0 m3/d),were used to calculate the net present value(NPV),incorporating both capital expenditure(CAPEX)and operating expenditure.The results showed that the tank cost was estimated above membrane cost in the 38.2%,where capital expenditure contributed 24.2%more than operational expenditure.Tank construction cost was decisive in determining the net present value contributed 62.1%to the capital expenditure.The membrane bioreactor has the advantage of a longer lifespan flat-sheet membrane,while flux decline was tolerable.The antibiotics decreased to 1.87±0.33 mg/L in the MBR effluent.The upgrade to the membrane bioreactor also benefited further treatments by 10.1%-44.7%lower direct investment.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.51738005).
文摘The risks posed by algal blooms caused by nitrogen and phosphorus in reclaimed water used in urban water landscapes need to be carefully controlled.In this study,the combined effects of the nitrogen and phosphorus concentrations and the light intensity and temperature on the specific growth rates of algae were determined using Monod,Steele,and Arrhenius models,then an integrated algal growth model was developed.The algae biomass,nitrogen concentration,and phosphorus concentration mass balance equations were used to establish a new control model describing the nitrogen and phosphorus concentration and hydraulic retention time thresholds for algal blooms.The model parameters were determined by fitting the models to data acquired experimentally.Finally,the control model and numerical simulations for six typical algae and mixed algae under standard conditions were used to determine nitrogen/phosphorus concentration and hydraulic retention time thresholds for landscape water to which reclaimed water is supplied(i.e.,for a reclaimed water landscape).
文摘污水厂尾水回用作为水源时,其ρ(TN)较高是亟待解决的问题.在调研污水厂尾水水质的基础上,利用MBBR(移动床生物膜反应器)对其进行深度脱氮,并考察HRT(水力停留时间)对不同填料(聚乙烯和陶粒)的MBBR运行效果的影响.结果表明,NO3--N是尾水中氮的主要形态,其质量浓度约占ρ(TN)的80.8%±8.4%.HRT分别为12、8和4 h时,对NO3--N去除率影响不大,均能达到90%以上,但反硝化能力随着HRT的缩短而成倍增加;HRT为4 h时各反应器的反硝化能力最大,聚乙烯和陶粒MBBR中分别为(28.4±14.5)和(27.4±14.3)mg(L·d)(以NO3--N计).随着HRT的减少,CODCr去除率呈降低趋势.三维荧光分析表明,进、出水中均含有类富里酸和类蛋白质等DOM物质.HRT为8 h时MBBR对DOM的去除率最高,聚乙烯填料MBBR对有机污染物的去除效果略优于陶粒填料.综合考虑氮和有机污染物去除效能,聚乙烯和陶粒填料MBBR优化HRT均为8 h.