Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline tra...Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline transportation of backfill slurry were investigated. The results show that the backfill capability of the backfill system should be higher than 74.4 m3/h according to the mining production and backfill times in the mine; the minimum velocity (critical velocity) and practical working velocity of the backfill slurry are 1.44 and 3.82 m/s, respectively. Various formulae give the maximum ratio of total length to vertical height of pipeline (L/H ratio) of the backfill system of 5.4, and then the reliability and capability of the system can be evaluated.展开更多
According to the hydraulic calculation principles of the orifice outflow, the discharge capacity of the columnar reversing gate under the partial opening condition was calculated and checked. Using ANSYS, a large fini...According to the hydraulic calculation principles of the orifice outflow, the discharge capacity of the columnar reversing gate under the partial opening condition was calculated and checked. Using ANSYS, a large finite element analysis software, the discharge process was simulated. The distribution rule of the velocities in the gate chamber and downstream channel was obtained. An FEM model of the columnar reversing gate was built, and the natural vibration properties of the gate were analyzed. Based on the Westergaard added mass method, the added mass caused by the fluid-structure coupling motion was taken into account, and the effects of the coupling interaction were discussed. The results show that the size of the small gates meets the demand for discharge capacity, the current in the gate chamber is quite turbulent, the trunnion and arms are obviously impacted by flow, and the effects of water on vibration characteristics are remarkable. The study provides a reference for the design and calculation of gates of the same type.展开更多
In this study, the shallow dish cross-section roadside ditch was designed, based on highway 304 line from Yanchi to Hongjing of Ningxia Province. The hy- draulic calculation of the shallow ditch obtained the correspon...In this study, the shallow dish cross-section roadside ditch was designed, based on highway 304 line from Yanchi to Hongjing of Ningxia Province. The hy- draulic calculation of the shallow ditch obtained the corresponding water outlet dis- tance of the ditch with the width of 1.5 m or 2 m suitable for local use under dif- ferent groove longitudinal slope conditions. And the key roadside ditch construction techniques and suitable grass species were introduced.展开更多
The experimental studies of the flaring gate pier applied on the surface spillway in a high-arch dam show that a shock-wave will appear when the pattern of the flow is kept as super-critical. Meanwhile, the water dept...The experimental studies of the flaring gate pier applied on the surface spillway in a high-arch dam show that a shock-wave will appear when the pattern of the flow is kept as super-critical. Meanwhile, the water depth at the outlet increases significantly, the flow moves downward in different directions, and the plunging jet is in a narrow and long shape, with a full longitudinal diffusion. In addition, the variation of the flaring gate pier design parameters affects little the discharge capacity of the surface spillway, these parameters including the contraction ratio fl, the contraction angle c~ and the spillway chute angle O. The pressure on the bottom of the spillway increases along the way and reaches the maximum before the outlet, and then decreases rapidly. Due to the flow impacting, the pressure on both sidewalls increases abruptly at the turning line of the flaring gate pier. To see the characteristics of the flow in the flaring gate pier, a simple calculation method is suggested based on the conversation of energy and mass, and the calculation methods for the jet trajectory and the horizontal length in air are also proposed. The results are found in good agreement with experimental data.展开更多
This article aims to establish a coupled thermo-hydraulic mathematical model for steam network by adopting a set of equations, i.e., the continuity equation, motion equation, energy equation, state equation and enthal...This article aims to establish a coupled thermo-hydraulic mathematical model for steam network by adopting a set of equations, i.e., the continuity equation, motion equation, energy equation, state equation and enthalpy equation and considering the interaction of hydraulic and thermal working conditions. The model is simplified according to steam flow features in pipe networks. The unsteady flow model is simplified to a steady one with considering engineering practice and the solution to the governing equations are obtained by using the standard fourth-order Runge-Kutta method. Many factors of steam flow are generally considered, such as condensability, change of state, friction and heat transfer in the model. It is concluded that coupled iteration can be employed in steam network thermo-hydraulic computation. The numerical results with the model are basically in accordance with practical operation data.展开更多
基金Project(50490270) supported by the National Natural Science Foundation of China
文摘Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline transportation of backfill slurry were investigated. The results show that the backfill capability of the backfill system should be higher than 74.4 m3/h according to the mining production and backfill times in the mine; the minimum velocity (critical velocity) and practical working velocity of the backfill slurry are 1.44 and 3.82 m/s, respectively. Various formulae give the maximum ratio of total length to vertical height of pipeline (L/H ratio) of the backfill system of 5.4, and then the reliability and capability of the system can be evaluated.
文摘According to the hydraulic calculation principles of the orifice outflow, the discharge capacity of the columnar reversing gate under the partial opening condition was calculated and checked. Using ANSYS, a large finite element analysis software, the discharge process was simulated. The distribution rule of the velocities in the gate chamber and downstream channel was obtained. An FEM model of the columnar reversing gate was built, and the natural vibration properties of the gate were analyzed. Based on the Westergaard added mass method, the added mass caused by the fluid-structure coupling motion was taken into account, and the effects of the coupling interaction were discussed. The results show that the size of the small gates meets the demand for discharge capacity, the current in the gate chamber is quite turbulent, the trunnion and arms are obviously impacted by flow, and the effects of water on vibration characteristics are remarkable. The study provides a reference for the design and calculation of gates of the same type.
基金Supported by the Science and Technology Project of the Communication and Transportation Construction~~
文摘In this study, the shallow dish cross-section roadside ditch was designed, based on highway 304 line from Yanchi to Hongjing of Ningxia Province. The hy- draulic calculation of the shallow ditch obtained the corresponding water outlet dis- tance of the ditch with the width of 1.5 m or 2 m suitable for local use under dif- ferent groove longitudinal slope conditions. And the key roadside ditch construction techniques and suitable grass species were introduced.
基金the National Natural Science Foundation of China (Grant Nos. 50909067, 51009102)the Program for New Century Excellent Talents in University (Grant No. 2011SCU-NCET-10-0589)
文摘The experimental studies of the flaring gate pier applied on the surface spillway in a high-arch dam show that a shock-wave will appear when the pattern of the flow is kept as super-critical. Meanwhile, the water depth at the outlet increases significantly, the flow moves downward in different directions, and the plunging jet is in a narrow and long shape, with a full longitudinal diffusion. In addition, the variation of the flaring gate pier design parameters affects little the discharge capacity of the surface spillway, these parameters including the contraction ratio fl, the contraction angle c~ and the spillway chute angle O. The pressure on the bottom of the spillway increases along the way and reaches the maximum before the outlet, and then decreases rapidly. Due to the flow impacting, the pressure on both sidewalls increases abruptly at the turning line of the flaring gate pier. To see the characteristics of the flow in the flaring gate pier, a simple calculation method is suggested based on the conversation of energy and mass, and the calculation methods for the jet trajectory and the horizontal length in air are also proposed. The results are found in good agreement with experimental data.
文摘This article aims to establish a coupled thermo-hydraulic mathematical model for steam network by adopting a set of equations, i.e., the continuity equation, motion equation, energy equation, state equation and enthalpy equation and considering the interaction of hydraulic and thermal working conditions. The model is simplified according to steam flow features in pipe networks. The unsteady flow model is simplified to a steady one with considering engineering practice and the solution to the governing equations are obtained by using the standard fourth-order Runge-Kutta method. Many factors of steam flow are generally considered, such as condensability, change of state, friction and heat transfer in the model. It is concluded that coupled iteration can be employed in steam network thermo-hydraulic computation. The numerical results with the model are basically in accordance with practical operation data.