期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Growth of β-Ga_2O_3 Films on Sapphire by Hydride Vapor Phase Epitaxy 被引量:3
1
作者 Ze-Ning XIONG Xiang-Qian XIU +7 位作者 Yue-Wen LI Xue-Mei HUA Zi-Li XIE Peng CHEN Bin LIU Ping HAN Rong ZHANG You-Dou ZHENG 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第5期141-143,共3页
Two-inch Ga_2O_3 films with(ˉ201)-orientation are grown on c-sapphire at 850–1050°C by hydride vapor phase epitaxy. High-resolution x-ray diffraction shows that pure β-Ga_2O_3 with a smooth surface has a hig... Two-inch Ga_2O_3 films with(ˉ201)-orientation are grown on c-sapphire at 850–1050°C by hydride vapor phase epitaxy. High-resolution x-ray diffraction shows that pure β-Ga_2O_3 with a smooth surface has a higher crystal quality, and the Raman spectra reveal a very small residual strain in β-Ga_2O_3 grown by hydride vapor phase epitaxy compared with bulk single crystal. The optical transmittance is higher than 80% in the visible and near-UV regions, and the optical bandgap energy is calculated to be 4.9 e V. 展开更多
关键词 Growth of Ga2O3 Films on Sapphire by hydride vapor phase epitaxy XRD
下载PDF
The fabrication of AlN by hydride vapor phase epitaxy 被引量:1
2
作者 Maosong Sun Jinfeng Li +1 位作者 Jicai Zhang Wenhong Sun 《Journal of Semiconductors》 EI CAS CSCD 2019年第12期70-81,共12页
Aluminum nitride(AlN)is the promising substrates material for the epitaxial growth ofⅢ-nitrides devices,such as high-power,high-frequency electronic,deep ultraviolet optoelectronics and acoustic devices.However,it is... Aluminum nitride(AlN)is the promising substrates material for the epitaxial growth ofⅢ-nitrides devices,such as high-power,high-frequency electronic,deep ultraviolet optoelectronics and acoustic devices.However,it is rather difficult to obtain the high quality and crack-free thick AlN wafers because of the low surface migration of Al adatoms and the large thermal and lattice mismatches between the foreign substrates and AlN.In this work,the fabrication of AlN material by hydride vapor phase epitaxy(HVPE)was summarized and discussed.At last,the outlook of the production of AlN by HVPE was prospected. 展开更多
关键词 hydride vapor phase epitaxy aluminum nitride templates free standing substrate
下载PDF
Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy 被引量:1
3
作者 Jiafan Chen Jun Huang +1 位作者 Didi Li Ke Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期477-480,共4页
We report the growth of porous AlN films on C-face SiC substrates by hydride vapor phase epitaxy(HⅤPE).The influences of growth condition on surface morphology,residual strain and crystalline quality of Al N films ha... We report the growth of porous AlN films on C-face SiC substrates by hydride vapor phase epitaxy(HⅤPE).The influences of growth condition on surface morphology,residual strain and crystalline quality of Al N films have been investigated.With the increase of theⅤ/Ⅲratio,the growth mode of Al N grown on C-face 6H-SiC substrates changes from step-flow to pit-hole morphology.Atomic force microscopy(AFM),scanning electron microscopy(SEM)and Raman analysis show that cracks appear due to tensile stress in the films with the lowestⅤ/Ⅲratio and the highestⅤ/Ⅲratio with a thickness of about 3μm.In contrast,under the mediumⅤ/Ⅲratio growth condition,the porous film can be obtained.Even when the thickness of the porous Al N film is further increased to 8μm,the film remains porous and crack-free,and the crystal quality is improved. 展开更多
关键词 hydride vapor phase epitaxy(HVPE) POROUS ALN
下载PDF
Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
4
作者 王闯 高晓冬 +7 位作者 李迪迪 陈晶晶 陈家凡 董晓鸣 王晓丹 黄俊 曾雄辉 徐科 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期399-404,共6页
A crack-free AlN film with 4.5 μm thickness was grown on a 2-inch hole-type nano-patterned sapphire substrates(NPSSs) by hydride vapor phase epitaxy(HVPE). The coalescence, stress evolution, and dislocation annihilat... A crack-free AlN film with 4.5 μm thickness was grown on a 2-inch hole-type nano-patterned sapphire substrates(NPSSs) by hydride vapor phase epitaxy(HVPE). The coalescence, stress evolution, and dislocation annihilation mechanisms in the AlN layer have been investigated. The large voids located on the pattern region were caused by the undesirable parasitic crystallites grown on the sidewalls of the nano-pattern in the early growth stage. The coalescence of the c-plane AlN was hindered by these three-fold crystallites and the special triangle void appeared. The cross-sectional Raman line scan was used to characterize the change of stress with film thickness, which corresponds to the characteristics of different growth stages of AlN. Threading dislocations(TDs) mainly originate from the boundary between misaligned crystallites and the c-plane AlN and the coalescence of two adjacent c-plane AlN crystals, rather than the interface between sapphire and AlN. 展开更多
关键词 hydride vapor phase epitaxy(HVPE) ALN threading dislocations nano-patterned sapphire substrate
下载PDF
Growth of a-Plane GaN Films on r-Plane Sapphire by Combining Metal Organic Vapor Phase Epitaxy with the Hydride Vapor Phase Epitaxy
5
作者 姜腾 许晟瑞 +3 位作者 张进成 林志宇 蒋仁渊 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期173-176,共4页
Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of... Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of the samples are characterized by atomic force microscopy. The full width at half maximum (FWHM) of the HVPE sample shows a W-shape and that of the MOVPE sample shows an M-shape plane with the degree of 0 in the high-resolution x-ray diffraction (HRXRD) results. The surface morphology attributes to this significant anisotropic. HRXRD reveals that there is a significant reduction in the FWHM, both on-axis and off-axis for HVPE GaN are compared with the MOVPE template. The decrease of the FWHM of E2 (high) Raman scat tering spectra further indicates the improvement of crystal quality after HVPE. By comparing the results of secondary- ion-mass spectroscope and photoluminescence spectrum of the samples grown by HVPE and MOVPE, we propose that C-involved defects are originally responsible for the yellow luminescence. 展开更多
关键词 MOVPE GAN Growth of a-Plane GaN Films on r-Plane Sapphire by Combining Metal Organic vapor phase epitaxy with the hydride vapor phase epitaxy
下载PDF
GaN substrate and GaN homo-epitaxy for LEDs:Progress and challenges 被引量:1
6
作者 吴洁君 王昆 +1 位作者 于彤军 张国义 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期65-74,共10页
After a brief review on the progresses in GaN substrates by ammonothermal method and Na-flux method and hydride vapor phase epitaxy (HVPE) technology, our research results of growing GaN thick layer by a gas fow-rno... After a brief review on the progresses in GaN substrates by ammonothermal method and Na-flux method and hydride vapor phase epitaxy (HVPE) technology, our research results of growing GaN thick layer by a gas fow-rnodulated HVPE, removing the GaN layer through an efficient self-separation process from sapphire substrate, and modifying the uniformity of multiple wafer growth are presented. The effects of surface morphology and defect behaviors on the GaN homo-epitaxial growth on free standing substrate are also discussed, and followed by the advances of LEDs on GaN substrates and prospects of their applications in solid state lighting. 展开更多
关键词 gallium nitride (GaN) free standing substrate hydride vapor phase epitaxy (HVPE) homo-epitaxy
下载PDF
Progress in bulk GaN growth 被引量:3
7
作者 徐科 王建峰 任国强 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期1-16,共16页
Three main technologies for bulk GaN growth, i.e., hydride vapor phase epitaxy (HVPE), Na-flux method, and am- monothermal method, are discussed. We report our recent work in HVPE growth of GaN substrate, including ... Three main technologies for bulk GaN growth, i.e., hydride vapor phase epitaxy (HVPE), Na-flux method, and am- monothermal method, are discussed. We report our recent work in HVPE growth of GaN substrate, including dislocation reduction, strain control, separation, and doping of GaN film. The growth mechanisms of GaN by Na-flux and ammonother- mal methods are compared with those of HVPE. The mechanical behaviors of dislocation in bulk GaN are investigated through nano-indentation and high-space resolution surface photo-voltage spectroscopy. In the last part, the progress in growing some devices on GaN substrate by homo-epitaxy is introduced. 展开更多
关键词 nitride semiconductor bulk GaN hydride vapor phase epitaxy (HVPE) DISLOCATION
下载PDF
Electrochemical liftoff of freestanding GaN by a thick highly conductive sacrificial layer grown by HVPE 被引量:1
8
作者 Xiao Wang Yu-Min Zhang +4 位作者 Yu Xu Zhi-Wei Si Ke Xu Jian-Feng Wang Bing Cao 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期531-535,共5页
Separation technology is an indispensable step in the preparation of freestanding GaN substrate. In this paper, a largearea freestanding GaN layer was separated from the substrate by an electrochemical liftoff process... Separation technology is an indispensable step in the preparation of freestanding GaN substrate. In this paper, a largearea freestanding GaN layer was separated from the substrate by an electrochemical liftoff process on a sandwich structure composed of an Fe-doped GaN substrate, a highly conductive Si-doped sacrificial layer and a top Fe-doped layer grown by hydride vapor phase epitaxy(HVPE). The large difference between the resistivity in the Si-doped layer and Fe-doped layer resulted in a sharp interface between the etched and unetched layer. It was found that the etching rate increased linearly with the applied voltage, while it continuously decreased with the electrochemical etching process as a result of the mass transport limitation. Flaky GaN pieces and nitrogen gas generated from the sacrificial layer by electrochemical etching were recognized as the main factors responsible for the blocking of the etching channel. Hence, a thick Si-doped layer grown by HVPE was used as the sacrificial layer to alleviate this problem. Moreover, high temperature and ultrasonic oscillation were also found to increase the etching rate. Based on the results above, we succeeded in the liftoff of ~ 1.5 inch GaN layer. This work could help reduce the cost of freestanding GaN substrate and identifies a new way for mass production. 展开更多
关键词 electrochemical etching LIFTOFF hydride vapor phase epitaxy(HVPE) freestanding GaN
下载PDF
Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE 被引量:1
9
作者 Di-Di Li Jing-Jing Chen +4 位作者 Xu-Jun Su Jun Huang Mu-Tong Niu Jin-Tong Xu Ke Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期430-435,共6页
AlN films grown on sputter-deposited and annealed AlN buffer layer by high temperature hydride vapor phase epitaxy(HVPE)have been fabricated and structurally characterized.The crystalline quality and surface morpholog... AlN films grown on sputter-deposited and annealed AlN buffer layer by high temperature hydride vapor phase epitaxy(HVPE)have been fabricated and structurally characterized.The crystalline quality and surface morphology of as-grown AlN films with various V/III ratios were studied and compared.The XRD results showed that the crystalline quality of the AlN film could be optimized when the growth V/III ratio was 150.At the same time,the full width at half-maximum(FWHM)values of(0002)-and(10¯12)-plane were 64 arcsec and 648 arcsec,respectively.As revealed by AFM,the AlN films grown with higher V/III ratios of 150 and 300 exhibited apparent hillock-like surface structure due to the low density of screw threading dislocation(TD).The defects microstructure and strain field around the HVPE-AlN/sputtered-AlN/sapphire interfaces have been investigated by transmission electron microscopy(TEM)technique combined with geometric phase analysis(GPA).It was found that the screw TDs within AlN films intend to turn into loops or half-loops after originating from the AlN/sapphire interface,while the edge ones would bend first and then reacted with others within a region of 400 nm above the interface.Consequently,part of the edge TDs propagated to the surface vertically.The GPA analysis indicated that the voids extending from sapphire to HVPE-AlN layer were beneficial to relax the interfacial strain of the best quality AlN film grown with a V/III ratio of 150. 展开更多
关键词 hydride vapor phase epitaxy(HVPE) ALN threading dislocation(TD) SPUTTER-DEPOSITION
下载PDF
Growth Front Evolution of GaN Thin Films on Sapphire Substrate During HVPE 被引量:1
10
作者 LU Dian-qing LI Xin-hua LIU Xue-dong 《Semiconductor Photonics and Technology》 CAS 2005年第4期221-224,共4页
The growth front evolution of GaN thin films deposited on sapphire substrate by hydride vapor phase epitaxity has been studied with atomic force microscope. The evolution of the surface morphology presents four featur... The growth front evolution of GaN thin films deposited on sapphire substrate by hydride vapor phase epitaxity has been studied with atomic force microscope. The evolution of the surface morphology presents four features of stage with the growth process. In initial growth stage, the surface is granular, and the typical grain diameter is about 250 nm for t =0.1 min. 3D growth plays a key role before the films come up to full coalescence, which causes a rough surface. After 0. 1 min the growth dimension decreases with the increase of lateral over growth, the surface roughness obviously decreases. From 0.4 min to 3 rain, the growth front roughness increases gradually, and the evolution of the surface roughness exhibits the characteristics of self-affined fractal. Beyond 3 min, the root-mean-square decreases gradually, which means the deposition behavior from hyper-2D growth gradually turns into layer growth mode with the increase of growth time. 展开更多
关键词 GAN hydride vapor phase epitaxy Growth front evolution
下载PDF
High Nitrogen Pressure Solution (HNPS) growth of GaN on 2 inch free standing GaN substrates 被引量:2
11
作者 M.BOKOWSKI I.GRZEGORY +4 位作者 B.LUCZNIK T.SOCHACKI M.KRYKO G.KAMLER S.POROWSKI 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第1期42-46,共5页
Recent results of High Nitrogen Pressure Solution (HNPS) growth of GaN crystals deposited on and separated from 2 inch,and smaller,GaN substrates grown by Hydride Vapor Phase Epitaxy (HVPE) have been presented. The in... Recent results of High Nitrogen Pressure Solution (HNPS) growth of GaN crystals deposited on and separated from 2 inch,and smaller,GaN substrates grown by Hydride Vapor Phase Epitaxy (HVPE) have been presented. The influence of the c-plane bowing in the initial substrate on quality,rate and mode of growth by HNPS method has been analyzed in details. 展开更多
关键词 High Nitrogen Pressure Solution (HNPS) growth seeded growth hydride vapor phase epitaxy (HVPE) growth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部