The mechanism of bubble formation in air/hydro systems is investigated. Results presented in this paper include further insight into the mechanism of bubble formation and the measurement of bubble content. The regula...The mechanism of bubble formation in air/hydro systems is investigated. Results presented in this paper include further insight into the mechanism of bubble formation and the measurement of bubble content. The regularity of bubble transport in the system is found, with an idea for a new method for separating gas from oil. The method has been verified experimentally with favorable results.展开更多
A new method for measuring bubble content of two\|phase fluids in complex systems such as air/hydro systems has been designed and verified. Some new results of the study on the factors influencing bubble content using...A new method for measuring bubble content of two\|phase fluids in complex systems such as air/hydro systems has been designed and verified. Some new results of the study on the factors influencing bubble content using this new method are given in this paper, including the results of the experiments in the SKIP\|valve system and long\|tube system. Results indicate that the operating time, opening of the control\|valve, air supply pressure, mass of the load, speed ratio, and the length of the tube all affect bubble content.展开更多
Due to the stochastic and correlated attributes of natural inflows, the mid-term generation scheduling problem for cascaded hydro systems is a very challenging issue.This paper proposes a novel stochastic optimization...Due to the stochastic and correlated attributes of natural inflows, the mid-term generation scheduling problem for cascaded hydro systems is a very challenging issue.This paper proposes a novel stochastic optimization algorithm using Latin hypercube sampling and Cholesky decomposition combined with scenario bundling and sensitivity analysis(LC-SB-SA) to address this problem.To deal with the uncertainty of natural inflows, Latin hypercube sampling is implemented to provide an adequate number of sampling scenarios efficiently, and Cholesky decomposition is introduced to describe the correlated natural inflows among cascaded stations.In addition, to overcome the difficulties in solving the objectives of all the scenarios, scenario bundling and sensitivity analysis algorithms are developed to improve the computational efficiency.Simulation results from both two-station and tenstation systems indicate that the proposed method has the merits in accuracy as well as calculation speed for the midterm cascaded hydro generation scheduling.The consideration of natural inflow correlation makes the formulated problem more realistic.展开更多
Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to com...Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to complement the electricity gap. In this paper,a new structure of megawatt-class PV system integrating battery at DC-bus (DC: direct current) is proposed to be used in hydro/PV hybrid power system,and 4 main designing considerations and several key equipments are discussed. In 2011,a 2 MWp PV station with the proposed structure was built up in Yushu,China. From stability analysis,the station shows a strong stability under load cut-in/off and solar irradiance's fluctuation.展开更多
A fast-slow coupled model of the hydro-turbine governing system (HTGS) is established by introducing frequency disturbance in this paper. Based on the proposed model, the performances of two time scales for bursting...A fast-slow coupled model of the hydro-turbine governing system (HTGS) is established by introducing frequency disturbance in this paper. Based on the proposed model, the performances of two time scales for bursting oscillations in the HTGS are investigated and the effect of periodic excitation of frequency disturbance is analyzed by using the bifurcation diagrams, time waveforms and phase portraits. We find that stability and operational characteristics of the HTGS change with the value of system parameter kd. Furthermore, the comparative analyses for the effect of the bursting oscillations on the system with different amplitudes of the periodic excitation a are carried out. Meanwhile, we obtain that the relative deviation of the mechanical torque mt rises with the increase of a. These methods and results of the study, combined with the performance of two time scales and the fast-slow coupled engineering model, provide some theoretical bases for investigating interesting physical phenomena of the engineering system.展开更多
Dams for water supply usually represent an untapped hydroelectric potential. It is a small energetic potential, in most situations, usually requiring a particular solution to be viable. The use of pumps as power turbi...Dams for water supply usually represent an untapped hydroelectric potential. It is a small energetic potential, in most situations, usually requiring a particular solution to be viable. The use of pumps as power turbines often represents an alternative that enables the power generation in hydraulic structures already in operation, as is the case of dams in water supply systems. This potential can be exploited in conjunction with the implementation of PV modules on the water surface, installed on floating structures, both operating in a hydro PV hybrid system. The floating structure can also contribute to reducing the evaporation of water and providing a small increase in hydroelectric power available. This paper presents a pre-feasibility study for implementation of a hydroelectric power plant and PV modules on floating structures in the reservoir formed by the dam of Val de Serra, in southern Brazil. The dam is operated to provide drinking water to about 60% of the population of the city of Santa Maria, in the state of Rio Grande do Sul, in southern Brazil. The pre-feasibility study conducted with Homer software, version Legacy, indicated that the hydroelectric plant with a capacity of 227 kW can operate together with 60 kW of PV modules. This combination will result (in one of the configurations considered) in an initial cost of USD$ 1715.83 per kW installed and a cost of energy of USD$ 0.059/kWh.展开更多
Hydro-sodalites are zeolitic materials with a wide variety of applications.Fly ash is an abundant industrial solid waste,rich in silicon and aluminum,from which hydro-sodalite can be synthesized.However,traditional hy...Hydro-sodalites are zeolitic materials with a wide variety of applications.Fly ash is an abundant industrial solid waste,rich in silicon and aluminum,from which hydro-sodalite can be synthesized.However,traditional hydrothermal synthesis methods are complex and cannot produce high-purity products.Therefore,there is a demand for processing routes to obtain high-purity hydro-sodalites.In the present study,high-purity hydro-sodalite(90.2 wt%)was prepared from fly ash by applying a hydrothermal method to a submolten salt system.Samples were characterized by powder X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetry and differential thermal analysis(TG–DTA),and Fourier transform infrared spectroscopy(FTIR)to confirm and quantify conversion of the raw material into the product phase.Purity of the samples prepared with an H2O/Na OH mass ratio of 1.5 and an H2O/fly ash mass ratio of 10 was calculated and the conversion process of the product phase was studied.Crystallinity of the product was influenced more by the Na OH concentration,less by the H2O/fly ash mass ratio.The main reaction process of the system is that the Si O ions produced by dissolution of the vitreous body in the fly ash and Na+ions in the solution reacted on the destroyed mullite skeleton to produce hydro-sodalite.This processing route could help mitigate processing difficulties,while producing high-purity hydro-sodalite from fly ash.展开更多
Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total sys...Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total system power generation and the minimum ten-day joint output. To effectively optimize the multi-objective model, a new algorithm named non-dominated sorting culture differential evolution algorithm(NSCDE) is proposed. The feasibility of NSCDE was verified through several well-known benchmark problems. It was then applied to the Jinping Wind-Solar-Hydro complementary power generation system. The results demonstrate that NSCDE can provide decision makers a series of optimized scheduling schemes.展开更多
This research work seeks to make renewable energy more reliable, cost effective, and accessible by exploring a different energy combination system to that currently applied to wind and hydro power. Instead of the usua...This research work seeks to make renewable energy more reliable, cost effective, and accessible by exploring a different energy combination system to that currently applied to wind and hydro power. Instead of the usual electrical combination of wind and hydro generators, this work involved combining a water and wind turbine mechanically, before driving an electrical generator. This new combination system was modeled and optimized in MATLAB, using a direct combination system commonly found in multi-engine helicopters. The system was found to operate satisfactorily, however it is mechanically more complex than current electrical combining systems. Research was undertaken regarding wind and water resource availability, and the turbines were chosen with these taken into consideration. Various combination systems were explored, including torque and speed split mechanical combinations, conventional electrical combination, and using a modified switched reluctance generator as a method of electro-mechanical combination. The generator selected for this work is a three phase 12/8 Switched Reluctance (SR) machine. A detailed winding polarity having four poles per phase and their effect on the performance of the machine is展开更多
The notion of energetic complementarity can be a tool for energy resource managers to prioritize energy generation projects based on renewable resources in both interconnected and independent systems. As a tool in dec...The notion of energetic complementarity can be a tool for energy resource managers to prioritize energy generation projects based on renewable resources in both interconnected and independent systems. As a tool in decision-making, it is important to know better the influence of energetic complementarity on the performance of hybrid systems especially with regard to energy shortages but also in relation to other parameters. In recent years, hydro PV hybrid systems have become a growing target of researchers and designers for the idea of installing photovoltaic modules on the water surface of reservoirs. Energetic complementarity has three components: time-complementarity, energy-amplitude and amplitude-complementarity. This paper is dedicated to the study of the influence of time-complementarity on the storage of energy through batteries in hydro PV hybrid systems. The method applied is in the literature and suggests the simulation of the system under study with the idealization of energy availabilities, to remove the effects of climatic variations and the characteristic intermittency of renewable resources. Simulations were performed with the well-known software Homer. The results provided the variations of the states of charge of the batteries as a function of different time-complementarities, indicating as expected better performances associated to higher time-complementarities. The results indicated that the cost of energy for a hybrid system with 28 batteries was equal to US$ 0.502 per kWh and that this cost increased as the time complementarity between energy resources moved away from the situation corresponding to full complementarity. The simulations also showed that the maintenance of the zero failure condition supplying the demands of the consumer loads requires that the load be reduced to 52% if the complementarity is reduced from the full complementarity to zero complementarity, with the cost of energy going from US$ 0.502 per kWh to US$ 0.796 per kWh. The results also allow a better understanding of the influence of time complementarity on the performance of hybrid systems.展开更多
This paper investigates the stability of the Francis hydro-turbine governing system with complex penstocks in the grid-connected mode. Firstly, a novel fractional-order nonlinear mathematical model of a Francis hydro-...This paper investigates the stability of the Francis hydro-turbine governing system with complex penstocks in the grid-connected mode. Firstly, a novel fractional-order nonlinear mathematical model of a Francis hydro-turbine governing system with complex penstocks is built from an engineering application perspective. This model is described by state-space equations and is composed of the Francis hydro-turbine model, the fractional-order complex penstocks model, the third-order generator model, and the hydraulic speed governing system model. Based on stability theory for a fractional-order nonlinear system, this study discovers a basic law of the bifurcation points of the above system with a change in the fractional-order a. Secondly, the stable region of the governing system is investigated in detail,and nonlinear dynamical behaviors of the system are identified and studied exhaustively via bifurcation diagrams, time waveforms, phase orbits, Poincare maps, power spectrums and spectrograms. Results of these numerical experiments provide a theoretical reference for further studies of the stability of hydropower stations.展开更多
The stream and rain data acquisition system presented in this paper makes the mapping of hydro potentials in the region or of the country economically and practically possible. Moreover, it can also serve as a flood w...The stream and rain data acquisition system presented in this paper makes the mapping of hydro potentials in the region or of the country economically and practically possible. Moreover, it can also serve as a flood warning system.展开更多
The wind power generation is increasing in many countries as a result of decreasing technology costs, active government policies for renewable energy sources, environmental concerns, etc.. This paper investigates the ...The wind power generation is increasing in many countries as a result of decreasing technology costs, active government policies for renewable energy sources, environmental concerns, etc.. This paper investigates the impact of wind power generation on ATC (available transmission capacity) calculation. In order to determine the maximum incremental MW transfer possible between two parts of a power system without violating any specified limits, ATCs are calculated. When calculating ATC values, it is necessary to assume production and consumption pattern in power system. Production of wind power depends on the wind speed, which is a random variable and it is impossible to forecast exactly the production of wind power that is needed for the ATCs calculation. In order to investigate influence of the stochastic wind power production on the ATCs value, computer model of Croatian electric power system is made in Power World Simulator. ATCs are calculated for southern part of Croatian power system in which besides wind power, hydro power plants are only type of power generation. Available wind speed measurements are used as input data for wind power production. The results of the ATC calculation for different scenario of wind power production and location in the Southern Croatian power system are presented and discussed in the paper.展开更多
A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy ...A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy produced by hydroelectric plants and coal-fired plants is divided into 4 components: potential energy, kinetic energy, water-deep pressure energy and reservoir energy. A new and important concept, reservoir energy, is proposed, based on which is divided into a number of water bodies, for example 3 water bodies, and a reservoir is analyzed in a new way. This paper presents an optimal scheduling solution of elec-tric energy production of hydro-thermal power systems based on multi-factors analytic method, in which some important factors, such as load demand, reservoir in-flow, water consumption volume increment rate of hydroelectric plants or converted from coal-fired plants, and so on are given to model the objective function and the constraints. A study example with three simulation cases is carried out to illustrate flexibility, adapta-bility, applicability of the proposed method.展开更多
MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchr...MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchronous generator in the developed MHPP system is introduced. Proposed hybrid DC excitation system consists of solar & hydrogen energy based power generating systems. Hybrid renewable energy based system is used for the excitation of the synchronous generator in the MHPP test system. The renewables are used as a secondary energy source to provide the excitation current to a synchronous generator that generates energy in MHPP. A PV (photovoltaic) array is used as the main source of excitation, and a FC (fuel cell) stack is used for DC excitation in the lack of sunshine. In the experimental setup, an electrical control card is developed, and a microcontroller is used to perform the proposed excitation system. All experimental results obtained from 5 kW rated power MHHP test system. Experimental results show that, the proposed method provides the continuous excitation current, and the operation of the synchronous generator is uninterrupted. The proposed method is also practical and easily implemented for MHPP systems.展开更多
文摘The mechanism of bubble formation in air/hydro systems is investigated. Results presented in this paper include further insight into the mechanism of bubble formation and the measurement of bubble content. The regularity of bubble transport in the system is found, with an idea for a new method for separating gas from oil. The method has been verified experimentally with favorable results.
文摘A new method for measuring bubble content of two\|phase fluids in complex systems such as air/hydro systems has been designed and verified. Some new results of the study on the factors influencing bubble content using this new method are given in this paper, including the results of the experiments in the SKIP\|valve system and long\|tube system. Results indicate that the operating time, opening of the control\|valve, air supply pressure, mass of the load, speed ratio, and the length of the tube all affect bubble content.
基金supported in part by National Natural Science Foundation of China (No.51507100)in part by Shanghai Sailing Program (No.15YF1404600)+1 种基金in part by ‘‘Chen Guang’’ project supported by Shanghai Municipal Education CommissionShanghai Education Development Foundation (No.14CG55)
文摘Due to the stochastic and correlated attributes of natural inflows, the mid-term generation scheduling problem for cascaded hydro systems is a very challenging issue.This paper proposes a novel stochastic optimization algorithm using Latin hypercube sampling and Cholesky decomposition combined with scenario bundling and sensitivity analysis(LC-SB-SA) to address this problem.To deal with the uncertainty of natural inflows, Latin hypercube sampling is implemented to provide an adequate number of sampling scenarios efficiently, and Cholesky decomposition is introduced to describe the correlated natural inflows among cascaded stations.In addition, to overcome the difficulties in solving the objectives of all the scenarios, scenario bundling and sensitivity analysis algorithms are developed to improve the computational efficiency.Simulation results from both two-station and tenstation systems indicate that the proposed method has the merits in accuracy as well as calculation speed for the midterm cascaded hydro generation scheduling.The consideration of natural inflow correlation makes the formulated problem more realistic.
基金Chinese Academy of Science (No.KGCX2- YW- 366)Ministry of Science and Technology(No. 2011AA05A106)
文摘Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to complement the electricity gap. In this paper,a new structure of megawatt-class PV system integrating battery at DC-bus (DC: direct current) is proposed to be used in hydro/PV hybrid power system,and 4 main designing considerations and several key equipments are discussed. In 2011,a 2 MWp PV station with the proposed structure was built up in Yushu,China. From stability analysis,the station shows a strong stability under load cut-in/off and solar irradiance's fluctuation.
基金Project supported by the Scientific Research Foundation of the National Natural Science Foundation of China–Outstanding Youth Foundation(Grant No.51622906)the National Natural Science Foundation of China(Grant No.51479173)+3 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.201304030577)the Scientific Research Funds of Northwest A&F University,China(Grant No.2013BSJJ095)the Science Fund for Excellent Young Scholars from Northwest A&F University(Grant No.Z109021515)the Shaanxi Provincial Nova Program,China(Grant No.2016KJXX-55)
文摘A fast-slow coupled model of the hydro-turbine governing system (HTGS) is established by introducing frequency disturbance in this paper. Based on the proposed model, the performances of two time scales for bursting oscillations in the HTGS are investigated and the effect of periodic excitation of frequency disturbance is analyzed by using the bifurcation diagrams, time waveforms and phase portraits. We find that stability and operational characteristics of the HTGS change with the value of system parameter kd. Furthermore, the comparative analyses for the effect of the bursting oscillations on the system with different amplitudes of the periodic excitation a are carried out. Meanwhile, we obtain that the relative deviation of the mechanical torque mt rises with the increase of a. These methods and results of the study, combined with the performance of two time scales and the fast-slow coupled engineering model, provide some theoretical bases for investigating interesting physical phenomena of the engineering system.
基金The authors wish to thank the institutions involved for their support to research activities related to renewable energy,which resulted,among other things,in this articleSpecifically,the third author would like to thank the partial financial support provided by CNPq through a support grant for research productivity.
文摘Dams for water supply usually represent an untapped hydroelectric potential. It is a small energetic potential, in most situations, usually requiring a particular solution to be viable. The use of pumps as power turbines often represents an alternative that enables the power generation in hydraulic structures already in operation, as is the case of dams in water supply systems. This potential can be exploited in conjunction with the implementation of PV modules on the water surface, installed on floating structures, both operating in a hydro PV hybrid system. The floating structure can also contribute to reducing the evaporation of water and providing a small increase in hydroelectric power available. This paper presents a pre-feasibility study for implementation of a hydroelectric power plant and PV modules on floating structures in the reservoir formed by the dam of Val de Serra, in southern Brazil. The dam is operated to provide drinking water to about 60% of the population of the city of Santa Maria, in the state of Rio Grande do Sul, in southern Brazil. The pre-feasibility study conducted with Homer software, version Legacy, indicated that the hydroelectric plant with a capacity of 227 kW can operate together with 60 kW of PV modules. This combination will result (in one of the configurations considered) in an initial cost of USD$ 1715.83 per kW installed and a cost of energy of USD$ 0.059/kWh.
基金financially supported by the National Natural Science Foundation of China (No. 51474028)the National Key Research and Development Program of China (No. 2017YFC0210301)+1 种基金China Postdoctoral Science Foundation (No. 2017M621034)the Science and Technology Benefiting Citizens Program of Ningbo, China (No. 2015C50058)
文摘Hydro-sodalites are zeolitic materials with a wide variety of applications.Fly ash is an abundant industrial solid waste,rich in silicon and aluminum,from which hydro-sodalite can be synthesized.However,traditional hydrothermal synthesis methods are complex and cannot produce high-purity products.Therefore,there is a demand for processing routes to obtain high-purity hydro-sodalites.In the present study,high-purity hydro-sodalite(90.2 wt%)was prepared from fly ash by applying a hydrothermal method to a submolten salt system.Samples were characterized by powder X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetry and differential thermal analysis(TG–DTA),and Fourier transform infrared spectroscopy(FTIR)to confirm and quantify conversion of the raw material into the product phase.Purity of the samples prepared with an H2O/Na OH mass ratio of 1.5 and an H2O/fly ash mass ratio of 10 was calculated and the conversion process of the product phase was studied.Crystallinity of the product was influenced more by the Na OH concentration,less by the H2O/fly ash mass ratio.The main reaction process of the system is that the Si O ions produced by dissolution of the vitreous body in the fly ash and Na+ions in the solution reacted on the destroyed mullite skeleton to produce hydro-sodalite.This processing route could help mitigate processing difficulties,while producing high-purity hydro-sodalite from fly ash.
基金supported by the National Key R&D Program of China (2016YFC0402209)the Major Research Plan of the National Natural Science Foundation of China (No. 91647114)
文摘Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total system power generation and the minimum ten-day joint output. To effectively optimize the multi-objective model, a new algorithm named non-dominated sorting culture differential evolution algorithm(NSCDE) is proposed. The feasibility of NSCDE was verified through several well-known benchmark problems. It was then applied to the Jinping Wind-Solar-Hydro complementary power generation system. The results demonstrate that NSCDE can provide decision makers a series of optimized scheduling schemes.
文摘This research work seeks to make renewable energy more reliable, cost effective, and accessible by exploring a different energy combination system to that currently applied to wind and hydro power. Instead of the usual electrical combination of wind and hydro generators, this work involved combining a water and wind turbine mechanically, before driving an electrical generator. This new combination system was modeled and optimized in MATLAB, using a direct combination system commonly found in multi-engine helicopters. The system was found to operate satisfactorily, however it is mechanically more complex than current electrical combining systems. Research was undertaken regarding wind and water resource availability, and the turbines were chosen with these taken into consideration. Various combination systems were explored, including torque and speed split mechanical combinations, conventional electrical combination, and using a modified switched reluctance generator as a method of electro-mechanical combination. The generator selected for this work is a three phase 12/8 Switched Reluctance (SR) machine. A detailed winding polarity having four poles per phase and their effect on the performance of the machine is
文摘The notion of energetic complementarity can be a tool for energy resource managers to prioritize energy generation projects based on renewable resources in both interconnected and independent systems. As a tool in decision-making, it is important to know better the influence of energetic complementarity on the performance of hybrid systems especially with regard to energy shortages but also in relation to other parameters. In recent years, hydro PV hybrid systems have become a growing target of researchers and designers for the idea of installing photovoltaic modules on the water surface of reservoirs. Energetic complementarity has three components: time-complementarity, energy-amplitude and amplitude-complementarity. This paper is dedicated to the study of the influence of time-complementarity on the storage of energy through batteries in hydro PV hybrid systems. The method applied is in the literature and suggests the simulation of the system under study with the idealization of energy availabilities, to remove the effects of climatic variations and the characteristic intermittency of renewable resources. Simulations were performed with the well-known software Homer. The results provided the variations of the states of charge of the batteries as a function of different time-complementarities, indicating as expected better performances associated to higher time-complementarities. The results indicated that the cost of energy for a hybrid system with 28 batteries was equal to US$ 0.502 per kWh and that this cost increased as the time complementarity between energy resources moved away from the situation corresponding to full complementarity. The simulations also showed that the maintenance of the zero failure condition supplying the demands of the consumer loads requires that the load be reduced to 52% if the complementarity is reduced from the full complementarity to zero complementarity, with the cost of energy going from US$ 0.502 per kWh to US$ 0.796 per kWh. The results also allow a better understanding of the influence of time complementarity on the performance of hybrid systems.
基金supported by the Scientific Research Foundation of the National Natural Science Foundation-Outstanding Youth Foundation(No.51622906)National Natural Science Foundation of China (No.51479173)+4 种基金Fundamental Research Funds for the Central Universities (201304030577)Scientific Research Funds of Northwest A&F University (2013BSJJ095)the Scientific Research Foundation for Water Engineering in Shaanxi Province (2013slkj-12)the Science Fund for Excellent Young Scholars from Northwest A&F University (Z109021515)the Shaanxi Nova Program (2016KJXX-55)
文摘This paper investigates the stability of the Francis hydro-turbine governing system with complex penstocks in the grid-connected mode. Firstly, a novel fractional-order nonlinear mathematical model of a Francis hydro-turbine governing system with complex penstocks is built from an engineering application perspective. This model is described by state-space equations and is composed of the Francis hydro-turbine model, the fractional-order complex penstocks model, the third-order generator model, and the hydraulic speed governing system model. Based on stability theory for a fractional-order nonlinear system, this study discovers a basic law of the bifurcation points of the above system with a change in the fractional-order a. Secondly, the stable region of the governing system is investigated in detail,and nonlinear dynamical behaviors of the system are identified and studied exhaustively via bifurcation diagrams, time waveforms, phase orbits, Poincare maps, power spectrums and spectrograms. Results of these numerical experiments provide a theoretical reference for further studies of the stability of hydropower stations.
文摘The stream and rain data acquisition system presented in this paper makes the mapping of hydro potentials in the region or of the country economically and practically possible. Moreover, it can also serve as a flood warning system.
文摘The wind power generation is increasing in many countries as a result of decreasing technology costs, active government policies for renewable energy sources, environmental concerns, etc.. This paper investigates the impact of wind power generation on ATC (available transmission capacity) calculation. In order to determine the maximum incremental MW transfer possible between two parts of a power system without violating any specified limits, ATCs are calculated. When calculating ATC values, it is necessary to assume production and consumption pattern in power system. Production of wind power depends on the wind speed, which is a random variable and it is impossible to forecast exactly the production of wind power that is needed for the ATCs calculation. In order to investigate influence of the stochastic wind power production on the ATCs value, computer model of Croatian electric power system is made in Power World Simulator. ATCs are calculated for southern part of Croatian power system in which besides wind power, hydro power plants are only type of power generation. Available wind speed measurements are used as input data for wind power production. The results of the ATC calculation for different scenario of wind power production and location in the Southern Croatian power system are presented and discussed in the paper.
文摘A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy produced by hydroelectric plants and coal-fired plants is divided into 4 components: potential energy, kinetic energy, water-deep pressure energy and reservoir energy. A new and important concept, reservoir energy, is proposed, based on which is divided into a number of water bodies, for example 3 water bodies, and a reservoir is analyzed in a new way. This paper presents an optimal scheduling solution of elec-tric energy production of hydro-thermal power systems based on multi-factors analytic method, in which some important factors, such as load demand, reservoir in-flow, water consumption volume increment rate of hydroelectric plants or converted from coal-fired plants, and so on are given to model the objective function and the constraints. A study example with three simulation cases is carried out to illustrate flexibility, adapta-bility, applicability of the proposed method.
文摘MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchronous generator in the developed MHPP system is introduced. Proposed hybrid DC excitation system consists of solar & hydrogen energy based power generating systems. Hybrid renewable energy based system is used for the excitation of the synchronous generator in the MHPP test system. The renewables are used as a secondary energy source to provide the excitation current to a synchronous generator that generates energy in MHPP. A PV (photovoltaic) array is used as the main source of excitation, and a FC (fuel cell) stack is used for DC excitation in the lack of sunshine. In the experimental setup, an electrical control card is developed, and a microcontroller is used to perform the proposed excitation system. All experimental results obtained from 5 kW rated power MHHP test system. Experimental results show that, the proposed method provides the continuous excitation current, and the operation of the synchronous generator is uninterrupted. The proposed method is also practical and easily implemented for MHPP systems.