期刊文献+
共找到2,020篇文章
< 1 2 101 >
每页显示 20 50 100
Effects of homogeneous-heterogeneous reactions and thermal radiation on magneto-hydrodynamic Cu-water nanofluid flow over an expanding flat plate with non-uniform heat source
1
作者 DOGONCHI A S CHAMKHA Ali J +3 位作者 HASHEMI-TILEHNOEE M SEYYEDI S M RIZWAN-UL-HAQ GANJI D D 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1161-1171,共11页
This study presents the effect of non-uniform heat source on the magneto-hydrodynamic flow of nanofluid across an expanding plate with consideration of the homogeneous-heterogeneous reactions and thermal radiation eff... This study presents the effect of non-uniform heat source on the magneto-hydrodynamic flow of nanofluid across an expanding plate with consideration of the homogeneous-heterogeneous reactions and thermal radiation effects.A nanofluid’s dynamic viscosity and effective thermal conductivity are specified with Corcione correlation.According to this correlation,the thermal conductivity is carried out by the Brownian motion.Similarity transformations reduce the governing equations concerned with energy,momentum,and concentration of nanofluid and then numerically solved.The influences of the effective parameters,e.g.,the internal heat source parameters,the volume fraction of nanofluid,the radiation parameter,the homogeneous reaction parameter,the magnetic parameter,the heterogeneous parameter and the Schmidt number are studied on the heat and flow transfer features.Further,regarding the effective parameters of the present work,the correlation for the Nusselt number has been developed.The outcomes illustrate that with the raising of the heterogeneous parameter and the homogeneous reaction parameter,the concentration profile diminishes.In addition,the outcomes point to a reverse relationship between the Nusselt number and the internal heat source parameters. 展开更多
关键词 NANOFLUID non-uniform heat source homogeneous-heterogeneous reactions thermal radiation Brownian motion
下载PDF
Solar thermochemical reactions Ⅱ:Synthesis of 2-aminothiophenes via Gewald reaction induced by solar thermal energy 被引量:2
2
作者 Ramadan Ahmed Mekheimer Mohamed Abdallah Ameen Kamal Usef Sadek 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第7期788-790,共3页
Green conditions have been developed for the synthesis of substituted 2-aminothiophenes employing multicomponent reactions of a ketone with active methylene nitrile and elemental sulphur induced by free solar thermal ... Green conditions have been developed for the synthesis of substituted 2-aminothiophenes employing multicomponent reactions of a ketone with active methylene nitrile and elemental sulphur induced by free solar thermal energy. 展开更多
关键词 2-Aminothiophenes Gewald reaction Solar thermal energy
下载PDF
Entropy analysis in electrical magnetohydrodynamic(MHD) flow of nanofluid with effects of thermal radiation,viscous dissipation,and chemical reaction 被引量:5
3
作者 Yahaya Shagaiya Daniel Zainal Abdul Aziz +1 位作者 Zuhaila Ismail Faisal Salah 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期235-242,共8页
The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, vis... The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, viscous dissipation, and chemical reaction have been investigated. A similarity transformation is used to transform the constitutive equations into a system of nonlinear ordinary differential equations.The resultant system of equations is then solved numerically using implicit finite difference method.The velocity, temperature, concentration, entropy generation, and Bejan number are obtained with the dependence of different emerging parameters examined. It is noticed that the velocity is more sensible with high values of electric field and diminished with a magnetic field. The radiative heat transfer and viscous dissipation enhance the heat conduction in the system. Moreover, the impact of mixed convection parameter and Buoyancy ratio parameter on Bejan number profile has reverse effects. A chemical reaction reduced the nanoparticle concentration for higher values. 展开更多
关键词 Entropy generation MHD nanofluid thermal radiation Bejan number Chemical reaction Viscous dissipation
下载PDF
Novel aluminum-based fuel:Facile preparation to improve thermal reactions 被引量:1
4
作者 Fa-yang Guan Hui Ren +2 位作者 Wan-jun Zhao Xin-zhou Wu Qing-jie Jiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第10期1852-1862,共11页
To improve the thermal properties of aluminum(Al)in the energetic system,a coated structure with ammonium perchlorate(AP)was prepared by a facile approach.And N,N-Dimethylformamide(DMF)was chosen as an ideal solvent b... To improve the thermal properties of aluminum(Al)in the energetic system,a coated structure with ammonium perchlorate(AP)was prepared by a facile approach.And N,N-Dimethylformamide(DMF)was chosen as an ideal solvent based on heterogeneous nucleation theory and molecular dynamics simulation.This coated structure could enlarge the contact area and improve the reaction environment to enhance the thermal properties.The addition of AP could accelerate oxidation temperature of Al with around 17.5°C.And the heat release of 85@15 composition rises to 26.13 k J/g and the reaction degree is97.6%with higher peak pressure(254.6 k Pa)and rise rate(1.397 MPa/s).An ideal ratio with 15 wt%AP was probed primarily.The high energy laser-induced shockwave experiment was utilized to simulate the reaction behavior in hot field.And the larger activated mixture of coated powder could release more energy to promote the growth of shockwave with higher speed up to 518.7±55.9 m/s.In conclusion,85@15 composition is expected to be applied in energetic system as a novel metal fuel. 展开更多
关键词 Aluminum-based fuel Heterogeneous nucleation Molecular dynamics simulation thermal reaction High energy laser-induced shockwave experiment
下载PDF
Mechanism and Kinetics Analysis of NO/SO_2/N_2/O_2 Dissociation Reactions in Non-Thermal Plasma 被引量:1
5
作者 王心亮 李婷婷 +2 位作者 魏冬香 魏艳丽 顾璠 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第6期710-716,共7页
The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation... The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation and molecule collision theory to predict the dissociation reaction rate coefficients. Upon comparison with available literature, the model was confirmed to be acceptably accurate in general. Several reaction rate coefficients of the NO/SO2/N2/O2 dissociation system were derived according to the Arrhenius formula. The activation energies of each plasma reaction were calculated by quantum chemistry methods. The relation between the dissociation reaction rate coefficient and electron temperature was established to describe the importance of each reaction and to predict relevant processes of gaseous chemical reactions. The sensitivity of the mechanism of NO/SO2/N2/O2 dissociation reaction in a non-thermal plasma was also analysed. 展开更多
关键词 non-thermal plasma chemical reaction kinetics Boltzmann equation rate coefficient
下载PDF
Hydrothermal Synthesis and Thermal Decomposition Mechanism of Alkaline Earth Benzoates 被引量:9
6
作者 Zhang, Keli Yuan, Jibing +1 位作者 Yuan, Liangjie Sun, Jutang 《Wuhan University Journal of Natural Sciences》 EI CAS 1999年第1期91-96,共6页
Alkaline earth benzoates were synthesized using hydrothermal reaction. The complexes were characterized by elemental analysis, IR, X ray powder diffraction. All of them are monoclinic and have layered structure. The ... Alkaline earth benzoates were synthesized using hydrothermal reaction. The complexes were characterized by elemental analysis, IR, X ray powder diffraction. All of them are monoclinic and have layered structure. The mechanism of thermal decomposition of alkaline earth benzoates was studied by using TG, DTA, IR and gas chromatography mass spectrometry. The thermal decomposition of alkaline earth benzoates in nitrogen proceeded in one or two stages: they decomposed to form MCO 3 (M=Ca,Sr,Ba) or MgO and organic compounds, respectively. The organic compounds obtained from decomposition reaction are mainly benzophenone, triphenylmethane and so on. 展开更多
关键词 alkaline earth BENZOATE hydrothermal reaction thermal decomposition
下载PDF
Thermal Behavior,Nonisothermal Decomposition Reaction Kinetics of Mixed Ester Double-base Gun Propellants 被引量:6
7
作者 YI Jian-hua ZHAO Feng-qi XU Si-yu GAO Hong-xu HU Rong-zu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第5期608-614,共7页
The thermal decomposition behavior and nonisothermal reaction kinetics of the double-base gun propellants containing the mixed ester of triethyleneglycol dinitrate(TEGDN) and nitroglycerin(NG) were investigated by... The thermal decomposition behavior and nonisothermal reaction kinetics of the double-base gun propellants containing the mixed ester of triethyleneglycol dinitrate(TEGDN) and nitroglycerin(NG) were investigated by thermogravimetry(TG) and differential thermogravimetry(DTG), and differential scanning calorimetry(DSC) under the high-pressure dynamic ambience. The results show that the thermal decomposition processes of the mixed nitric ester gun propellants have two mass-loss stages. Nitric ester evaporates and decomposes in the first stage, and nitrocellulose and centralite II(C2) decompose in the second stage. The mass loss, the DTG peak points, and the terminated temperatures of the two stages are changeable with the difference of the mass ratio of TEGDN to NG. There is only one obvious exothermic peak in the DSC curves under the different pressures. With the increase in the furnace pressure, the peak temperature decreases, and the decomposition heat increases. With the increase in the content of TEGDN, the decomposition heat decreases at 0.1 MPa and rises at high pressure. The variety of mass ratio of TEGDN to NG makes few effect on the exothermic peak temperatures in the DSC curves at different pressures. The kinetic equation of the main exothermal decomposition reaction of the gun propellant TG0601 was determined as: dα/dt=1021.59(1-α)3e-2.60×104/T. The reaction mechanism of the process can be classified as chemical reaction. The critical temperatures of the thermal explosion(Tbe and Tbp) obtained from the onset temperature(Te) and the peak temperature(Tp) are 456.46 and 473.40 K, respectively. ΔS≠, ΔH≠, and ΔG≠ of the decomposition reaction are 163.57 J·mol^-1·K^-1, 209.54 kJ·mol^-1, and 133.55 kJ·mol^-1, respectively. 展开更多
关键词 Mixed nitric ester gun propellant Triethyleneglycol dinitrate thermal behaviors Nonisothermal decomposition reaction kinetics
下载PDF
Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions 被引量:6
8
作者 Shibo Li Zhi Qun Tian +5 位作者 Yang Liu Zheng Jang Syed Waqar Hasan Xingfa Chen Panagiotis Tsiakaras Pei Kang Shen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期648-657,共10页
Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their m... Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their morphologies to expose more active sites is a fundamental objective for the practical application of fuel cells.Herein,we report a new class of hierarchically skeletal Pt-Ni nanocrystals(HSNs)with a multi-layered structure,prepared by an inorganic acid-induced solvothermal method.The addition of H_(2)SO_(4)to the synthetic protocol provides a critical trigger for the successful growth of Pt-Ni nanocrystals with the desired structure.The Pt-Ni HSNs synthesized by this method exhibit enhanced mass activity of 1.25 A mgpt−1 at 0.9 V(versus the reversible hydrogen electrode)towards ORR in 0.1-M HClO_(4),which is superior to that of Pt-Ni multi-branched nanocrystals obtained by the same method in the absence of inorganic acid;it is additionally 8.9-fold higher than that of the commercial Pt/C catalyst.Meanwhile,it displays enhanced stability,with only 21.6%mass activity loss after 10,000 cycles(0.6–1.0 V)for ORR.Furthermore,the Pt-Ni HSNs show enhanced activity and anti-toxic ability in CO for MOR.The superb activity of the Pt-Ni HSNs for ORR and MOR is fully attributed to an extensively exposed electrochemical surface area and high intrinsic activity,induced by strain effects,provided by the unique hierarchically skeletal alloy structure.The novel open and hierarchical structure of Pt-Ni alloy provides a promising approach for significant improvements of the activity of Pt based alloy electrocatalysts. 展开更多
关键词 Hierarchically skeletal Pt-Ni NANOCRYSTALS SELF-ASSEMBLY Solvent thermal method Oxygen reduction reaction Methanol oxidation reaction Fuel cells ACTIVITY
下载PDF
Boudouard reaction driven by thermal plasma for efficient CO2 conversion and energy storage 被引量:5
9
作者 Zhikai Li Tao Yang +5 位作者 Shaojun Yuan Yongxiang Yin Edwin J.Devid Qiang Huang Daniel Auerbach Aart W.Kleyn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第6期128-134,I0006,共8页
Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worl... Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worldwide,there is currently no process that achieves economically viable values for both CO2 conversion fraction and energy recovery efficiency simultaneously.Here we demonstrate that a process that utilizes the Boudouard reaction,CO^2++C→2 CO,driven by a thermal plasma allows both 95%CO2 conversion to CO and energy recovery efficiency of 70%,values far higher than seen so far.By comparing the conversion process with and without CO2 excitation by a plasma and by using optical emission spectroscopy we show that the improved performance is due to a novel mode of operation where CO2 is pyrolyzed into an active mixture of CO,O and O2 by an arc discharge which is then introduced into a fixed bed to interact with carbon material.In this way,the free oxygen in the mixture combusts with carbon to form CO,and residual plasma excited CO2 is reduced by carbon.In the overall process,the endothermic Boudouard reaction is partially replaced by an exothermic reaction,and the excess electric energy to produce CO2 plasma is reused in the carbon bed. 展开更多
关键词 Boudouard reaction thermal PLASMA CO2 CONVERSION Energy RECOVERY efficiency
下载PDF
Melting heat transfer in Cu-water and Ag-water nanofluids flow with homogeneous-heterogeneous reactions 被引量:2
10
作者 M.IMTIAZ F.SHAHID +1 位作者 T.HAYAT A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第4期465-480,共16页
This article addresses melting heat transfer in magnetohydrodynamics(MHD)nanofluid flows by a rotating disk. The analysis is performed in Cu-water and Ag-water nanofluids. Thermal radiation, viscous dissipation, and c... This article addresses melting heat transfer in magnetohydrodynamics(MHD)nanofluid flows by a rotating disk. The analysis is performed in Cu-water and Ag-water nanofluids. Thermal radiation, viscous dissipation, and chemical reactions impacts are added in the nanofluid model. Appropriate transformations lead to the nondimensionalized boundary layer equations. Series solutions for the resulting equations are computed.The role of pertinent parameters on the velocity, temperature, and concentration is analyzed in the outputs. It is revealed that the larger melting parameter enhances the velocity profile while the temperature profile decreases. The surface drag force and heat transfer rate are computed under the influence of pertinent parameters. Furthermore, the homogeneous reaction parameter serves to decrease the surface concentration. 展开更多
关键词 magnetohydrodynamics(MHD) NANOFLUID STRETCHABLE rotating disk thermal radiation melting heat TRANSFER homogeneous-heterogeneous reaction
下载PDF
Thermal stability of Mg_2 Si epitaxial film formed on Si(111) substrate by solid phase reaction 被引量:2
11
作者 王喜娜 王勇 +8 位作者 邹进 张天冲 梅增霞 郭阳 薛其坤 杜小龙 张晓娜 韩晓东 张泽 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第7期3079-3083,共5页
A single crystalline Mg2Si film was formed by solid phase reaction (SPR) of a Si(111) substrate with an Mg overlayer capped with an oxide layer(s),which was enhanced by post annealing from room temperature to 10... A single crystalline Mg2Si film was formed by solid phase reaction (SPR) of a Si(111) substrate with an Mg overlayer capped with an oxide layer(s),which was enhanced by post annealing from room temperature to 100℃ in a molecular beam epitaxy (MBE) system.The thermal stability of the Mg2Si film was then systematically investigated by post annealing in an oxygen-radical ambient at 300℃,450℃ and 650℃,respectively.The Mg2Si film stayed stable until the annealing temperature reached 450℃ then it transformed into amorphous MgOx attributed to the decomposition of Mg2Si and the oxidization of dissociated Mg. 展开更多
关键词 MG2SI solid phase reaction thermal stability
下载PDF
Numerical investigation of variable viscosities and thermal stratification effects on MHD mixed convective heat and mass transfer past a porous wedge in the presence of a chemical reaction 被引量:2
12
作者 I. Muhaimin R. Kandasamy Azme B. Khamis 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第11期1353-1364,共12页
An analysis is presented to investigate the effects of variable viscosities and thermal stratification on the MHD mixed convective heat and mass transfer of a viscous, incompressible, and electrically conducting fluid... An analysis is presented to investigate the effects of variable viscosities and thermal stratification on the MHD mixed convective heat and mass transfer of a viscous, incompressible, and electrically conducting fluid past a porous wedge in the presence of a chemical reaction. The wall of the wedge is embedded in a uniform nonDarcian porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically with finite difference methods. Numerical calculations up to the thirdorder level of truncation are carried out for different values of dimensionless parameters. The results are presented graphically, and show that the flow field and other quantities of physical interest are significantly influenced by these parameters. The results are compared with those available in literature, and show excellent agreement. 展开更多
关键词 variable viscosity chemical reaction non-Darcy flow mixed convection thermal stratification magnetic effect
下载PDF
Empirical correction of kinetic model for polymer thermal reaction process based on first order reaction kinetics 被引量:2
13
作者 Zhaoxiang Zhang Fei Guo +2 位作者 Wei Song Xiaohong Jia Yuming Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期132-144,共13页
Based on the theory of first-order reaction kinetics,a thermal reaction kinetic model in integral form has been derive.To make the model more applicable,the effects of time and the conversion degree on the reaction ra... Based on the theory of first-order reaction kinetics,a thermal reaction kinetic model in integral form has been derive.To make the model more applicable,the effects of time and the conversion degree on the reaction rate parameters were considered.Two types of undetermined functions were used to compensate for the intrinsic variation of the reaction rate,and two types of correction methods are provided.The model was explained and verified using published experimental data of different polymer thermal reaction systems,and its effectiveness and wide adaptability were confirmed.For the given kinetic model,only one parameter needs to be determined.The proposed empirical model is expected to be used in the numerical simulation of polymer thermal reaction process. 展开更多
关键词 thermal reaction Polymer processing reaction kinetics Mathematical modeling Empirical correction
下载PDF
Influence of Bi Addition on Pure Sn Solder Joints: Interfacial Reaction, Growth Behavior and Thermal Behavior 被引量:1
14
作者 LAI Yanqing HU Xiaowu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第3期668-675,共8页
The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering t... The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering time and the influence of Bi addition on the thermal behavior of Sn-x Bi solder alloys were investigated. The Cu6 Sn5 IMC could be observed as long as the molten solder contacted with the Cu substrate. However, with the longer welding time such as 60 and 300 s, the Cu3 Sn IMC was formed at the interface between Cu6 Sn5 and Cu substrate. With the increase of soldering time, the thickness of total IMCs increased, meanwhile, the grain size of Cu6 Sn5 also increased. An appropriate amount of Bi element was beneficial for the growth of total IMCs,but excessive Bi(≥ 5 wt%) inhibited the growth of Cu6 Sn5 and Cu3 Sn IMC in Sn-x Bi/Cu microelectronic interconnects. Furthermore, with the Bi contents increasing(Sn-10 Bi solder in this present investigation), some Bi particles accumulated at the interface between Cu6 Sn5 layer and the solder. 展开更多
关键词 INTERMETALLIC compound Sn-xBi SOLDER joints INTERFACIAL reaction thermal BEHAVIOR
下载PDF
Thermal Decomposition Reaction Kinetics Model of Powdered Bastnaesite 被引量:1
15
作者 涂赣峰 张世荣 +2 位作者 任存治 邢鹏飞 张成祥 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第4期265-267,共3页
The thermal decomposition procedure of powdered bastnaesite from Mianning was investigated, and TG DTA curves of bastnaesite were tested in atmosphere. According to the model provided by Criado, the kinetics data we... The thermal decomposition procedure of powdered bastnaesite from Mianning was investigated, and TG DTA curves of bastnaesite were tested in atmosphere. According to the model provided by Criado, the kinetics data were calculated and treated with thermal analysis techniques, and kinetics curves of thermal decomposition reaction of powdered bastnaesite were drawn. Comparing these curves with the standard curves and combining with the previous research results of kinetics parameter calculation, the results confirmed that the reaction mechanism was nucleation and nuclei growth, and its differential and integral forms of reaction kinetics model can be expressed as: f(α)=(1-α) and g(α) =-ln(1- α ) respectively. 展开更多
关键词 rare earths bastnasite thermal decomposition KINETICS reaction mechanism
下载PDF
In-depth investigation of the exothermic reactions between lithiated graphite and electrolyte in lithium-ion battery 被引量:2
16
作者 Yuejiu Zheng Zhihe Shi +8 位作者 Dongsheng Ren Jie Chen Xiang Liu Xuning Feng Li Wang Xuebing Han Languang Lu Xiangming He Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期593-600,I0017,共9页
Thermal runaway is a critical issue for the large application of lithium-ion batteries.Exothermic reactions between lithiated graphite and electrolyte play a crucial role in the thermal runaway of lithium-ion batterie... Thermal runaway is a critical issue for the large application of lithium-ion batteries.Exothermic reactions between lithiated graphite and electrolyte play a crucial role in the thermal runaway of lithium-ion batteries.However,the role of each component in the electrolyte during the exothermic reactions with lithiated graphite has not been fully understood.In this paper,the exothermic reactions between lithiated graphite and electrolyte of lithium-ion battery are investigated through differential scanning calorimetry(DSC) and evolved gas analysis.The lithiated graphite in the presence of electrolyte exhibit three exothermic peaks during DSC test.The reactions between lithiated graphite and LiPF_(6) and ethylene carbonate are found to be responsible for the first two exothermic peaks,while the third exothermic peak is attributed to the reaction between lithiated graphite and binder.In contrast,diethylene carbonate and ethyl methyl carbonate contribute little to the total heat generation of graphite-electrolyte reactions.The reaction mechanism between lithiated graphite and electrolyte,including the major reaction equations and gas products,are summarized.Finally,DSC tests on samples with various amounts of electrolyte are performed to clarify the quantitative relationship between lithiated graphite and electrolyte during the exothermic reactions.2.5 mg of lithiated graphite (Li_(0.8627)C_(6)) can fully react with around 7.2 mg electrolyte,releasing a heat generation of 2491 J g^(-1).The results presented in this study can provide useful guidance for the safety improvement of lithium-ion batteries. 展开更多
关键词 Lithium-ion battery Battery safety thermal runaway Exothermic reaction Li-intercalated graphite ELECTROLYTE
下载PDF
Mid-long Term Optimal Dispatching Method of Hydro-thermal Power System Considering Scheduled Maintenance 被引量:11
17
作者 GE Xiaolin SHU Jun ZHANG Lizi 《中国电机工程学报》 EI CSCD 北大核心 2012年第13期I0006-I0006,189,共1页
在中长期水火发电调度中考虑检修计划的影响是目前中长期水火发电调度面临的难题。利用现代整数代数建模技术,建立发电计划和检修计划协调优化的多场景调度模型。在该模型中,鉴于设备检修计划的连续性,在预测场景树的基础上,将场景... 在中长期水火发电调度中考虑检修计划的影响是目前中长期水火发电调度面临的难题。利用现代整数代数建模技术,建立发电计划和检修计划协调优化的多场景调度模型。在该模型中,鉴于设备检修计划的连续性,在预测场景树的基础上,将场景节点划分成不同的场景,通过节点和场景关联矩阵,实现多场景下设备检修模型的构建。同时,鉴于中长期调度计划中发电计划和检修计划对时段间隔要求的不同,分别设置电量相关节点和电力相关节点,实现中长期发电计划和检修计划的协调。上述模型是一个大规模混合整数线性规划(mixed integer linear programming,MILP)问题,采用商用MILP求解器进行求解。大规模实际水火电系统的实例分析结果表明,所提模型和方法是可行、有效的。 展开更多
关键词 长期优化调度 定期维护 发电系统 水热 电热 能源平衡 建模方法 场景模型
下载PDF
Forward Looking Analysis Approach to Assess Copper Acetate Thermal Decomposition Reaction Mechanism 被引量:1
18
作者 Itab Youssef Sécou Sall +2 位作者 Thierry Dintzer Sana Labidi Corinne Petit 《American Journal of Analytical Chemistry》 2019年第5期153-170,共18页
Thermal decomposition course of copper acetate monohydrate was monitored by combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) coupled with μ gas chromatography-mass spectrometry (μGC-MS) ... Thermal decomposition course of copper acetate monohydrate was monitored by combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) coupled with μ gas chromatography-mass spectrometry (μGC-MS) with other analytical techniques (thermogravimetry analysis and in situ X-ray diffraction). Non-isothermal kinetic was examined in air and Ar. A complete analysis of the evolution of infrared spectra matched with crystalline phase transition data during the course of reaction allows access to significant and accurate information about molecular dynamics. While thermogravimetry gives broad conclusion about two steps reaction (dehydration and decarboxylation), in line approach (in situ X-ray and in situ DRIFT coupled to μGC-MS) is proposed as an example of a new robust and forward-looking analysis. While decomposition mechanism of copper acetate monohydrate is still not well elucidated yet previously, the present in-line characterization results lead to accurate data making the corresponding mechanism explicit. 展开更多
关键词 In-Operando Spectroscopy and CHROMATOGRAPHY thermal Decomposition reaction Mechanism Copper ACETATE CROSS-LINKED Characterization Data
下载PDF
Influence of Chemical Reaction and Thermal Radiation on MHD Boundary Layer Flow and Heat Transfer of a Nanofluid over an Exponentially Stretching Sheet 被引量:1
19
作者 N. G. Rudraswamy B. J. Gireesha 《Journal of Applied Mathematics and Physics》 2014年第2期24-32,共9页
In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretch... In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretching sheet to be impermeable, the effect of chemical reaction, thermal radiation, thermopherosis, Brownian motion and suction parameters in the presence of uniform magnetic field on heat and mass transfer are addressed. The governing system of equations is transformed into coupled nonlinear ordinary differential equations using suitable similarity transformations. The transformed equations are then solved numerically using the well known Runge-Kutta-Fehlberg method of fourth-fifth order. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and the results are presented in both graphical and tabular forms. 展开更多
关键词 NANOFLUID EXPONENTIALLY STRETCHING Sheet Chemical reaction thermal Radiation Boundary Layer Flow Heat and Mass Transfer
下载PDF
Thermal Diffusion Effect on MHD Heat and Mass Transfer Flow past a Semi Infinite Moving Vertical Porous Plate with Heat Generation and Chemical Reaction 被引量:1
20
作者 Gurivireddy P. Raju M. C. +1 位作者 Mamatha B. Varma S. V. K. 《Applied Mathematics》 2016年第7期638-649,共12页
The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid a... The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction. It is assumed that the permeable plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. It is also assumed that the free stream consists of a mean velocity, temperature and concentration over which are super imposed an exponentially varying with time. The equations of continuity, momentum, energy and diffusion, which govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, temperature, concentration, Skin-friction, rate of heat transfer and rate of mass transfer has been discussed for variations in the physical parameters. An increase in both Pr and R results a decrease in thermal boundary layer thickness. However, concentration decreases as Kr, Sc increase but it increases with an increase in both So and δ. 展开更多
关键词 Heat Generation/Absorption Chemical reaction MHD thermal Radiation thermal Diffusion Heat and Mass Transfer Semi-Infinite Vertical Plate
下载PDF
上一页 1 2 101 下一页 到第
使用帮助 返回顶部