A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy ...A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy produced by hydroelectric plants and coal-fired plants is divided into 4 components: potential energy, kinetic energy, water-deep pressure energy and reservoir energy. A new and important concept, reservoir energy, is proposed, based on which is divided into a number of water bodies, for example 3 water bodies, and a reservoir is analyzed in a new way. This paper presents an optimal scheduling solution of elec-tric energy production of hydro-thermal power systems based on multi-factors analytic method, in which some important factors, such as load demand, reservoir in-flow, water consumption volume increment rate of hydroelectric plants or converted from coal-fired plants, and so on are given to model the objective function and the constraints. A study example with three simulation cases is carried out to illustrate flexibility, adapta-bility, applicability of the proposed method.展开更多
在中长期水火发电调度中考虑检修计划的影响是目前中长期水火发电调度面临的难题。利用现代整数代数建模技术,建立发电计划和检修计划协调优化的多场景调度模型。在该模型中,鉴于设备检修计划的连续性,在预测场景树的基础上,将场景...在中长期水火发电调度中考虑检修计划的影响是目前中长期水火发电调度面临的难题。利用现代整数代数建模技术,建立发电计划和检修计划协调优化的多场景调度模型。在该模型中,鉴于设备检修计划的连续性,在预测场景树的基础上,将场景节点划分成不同的场景,通过节点和场景关联矩阵,实现多场景下设备检修模型的构建。同时,鉴于中长期调度计划中发电计划和检修计划对时段间隔要求的不同,分别设置电量相关节点和电力相关节点,实现中长期发电计划和检修计划的协调。上述模型是一个大规模混合整数线性规划(mixed integer linear programming,MILP)问题,采用商用MILP求解器进行求解。大规模实际水火电系统的实例分析结果表明,所提模型和方法是可行、有效的。展开更多
This paper proposes a graph computing based mixed integer programming(MIP)framework for solving the security constrained unit commitment(SCUC)problem in hydro-thermal power systems incorporating pumped hydro storage(P...This paper proposes a graph computing based mixed integer programming(MIP)framework for solving the security constrained unit commitment(SCUC)problem in hydro-thermal power systems incorporating pumped hydro storage(PHS).The proposed graph computing-based MIP framework considers the economic operations of thermal units,cascade hydropower stations and PHS stations,as well as their technical impacts towards the network security.First,the hydro-thermal power system data and unit information are stored in a graph structure with nodes and edges,which enables nodal and hierarchical parallel computing for the unit commitment(UC)solution calculation and network security analysis.A MIP model is then formulated to solve the SCUC problem with the mathematical models of thermal units,cascade hydropower stations and PHS stations.In addition,two optimization approaches including convex hull reformulation(CHR)and special ordered set(SOS)methods are introduced for speeding up the MIP calculation procedure.To ensure the system stability under the derived UC solution,a parallelized graph power flow(PGPF)algorithm is proposed for the hydro-thermal power system network security analysis.Finally,case studies of the IEEE 118-bus system and a practical 2749-bus hydro-thermal power system are introduced to demonstrate the feasibility and validity of the proposed graph computing-based MIP framework.展开更多
This paper presents a method for managing congestion constraints in a hydro-thermal optimal power flow solution procedure. The congestion constraint is handled in this paper as an active power generation constraint. T...This paper presents a method for managing congestion constraints in a hydro-thermal optimal power flow solution procedure. The congestion constraint is handled in this paper as an active power generation constraint. To achieve this solution, a power flow tracing technique is used to detect the generators contributing to line congestion and penalize themby reducing their outputs. The congestion is then removed by setting the maximum power of the affected generators to the penalized value. The proposed algorithm is implemented using MATLAB software. Finally, the performance of the proposed algorithm is tested and the results for the 5-bus,30-bus, and 34-bus Nigerian power networks are presented.展开更多
文摘A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy produced by hydroelectric plants and coal-fired plants is divided into 4 components: potential energy, kinetic energy, water-deep pressure energy and reservoir energy. A new and important concept, reservoir energy, is proposed, based on which is divided into a number of water bodies, for example 3 water bodies, and a reservoir is analyzed in a new way. This paper presents an optimal scheduling solution of elec-tric energy production of hydro-thermal power systems based on multi-factors analytic method, in which some important factors, such as load demand, reservoir in-flow, water consumption volume increment rate of hydroelectric plants or converted from coal-fired plants, and so on are given to model the objective function and the constraints. A study example with three simulation cases is carried out to illustrate flexibility, adapta-bility, applicability of the proposed method.
文摘在中长期水火发电调度中考虑检修计划的影响是目前中长期水火发电调度面临的难题。利用现代整数代数建模技术,建立发电计划和检修计划协调优化的多场景调度模型。在该模型中,鉴于设备检修计划的连续性,在预测场景树的基础上,将场景节点划分成不同的场景,通过节点和场景关联矩阵,实现多场景下设备检修模型的构建。同时,鉴于中长期调度计划中发电计划和检修计划对时段间隔要求的不同,分别设置电量相关节点和电力相关节点,实现中长期发电计划和检修计划的协调。上述模型是一个大规模混合整数线性规划(mixed integer linear programming,MILP)问题,采用商用MILP求解器进行求解。大规模实际水火电系统的实例分析结果表明,所提模型和方法是可行、有效的。
文摘This paper proposes a graph computing based mixed integer programming(MIP)framework for solving the security constrained unit commitment(SCUC)problem in hydro-thermal power systems incorporating pumped hydro storage(PHS).The proposed graph computing-based MIP framework considers the economic operations of thermal units,cascade hydropower stations and PHS stations,as well as their technical impacts towards the network security.First,the hydro-thermal power system data and unit information are stored in a graph structure with nodes and edges,which enables nodal and hierarchical parallel computing for the unit commitment(UC)solution calculation and network security analysis.A MIP model is then formulated to solve the SCUC problem with the mathematical models of thermal units,cascade hydropower stations and PHS stations.In addition,two optimization approaches including convex hull reformulation(CHR)and special ordered set(SOS)methods are introduced for speeding up the MIP calculation procedure.To ensure the system stability under the derived UC solution,a parallelized graph power flow(PGPF)algorithm is proposed for the hydro-thermal power system network security analysis.Finally,case studies of the IEEE 118-bus system and a practical 2749-bus hydro-thermal power system are introduced to demonstrate the feasibility and validity of the proposed graph computing-based MIP framework.
文摘This paper presents a method for managing congestion constraints in a hydro-thermal optimal power flow solution procedure. The congestion constraint is handled in this paper as an active power generation constraint. To achieve this solution, a power flow tracing technique is used to detect the generators contributing to line congestion and penalize themby reducing their outputs. The congestion is then removed by setting the maximum power of the affected generators to the penalized value. The proposed algorithm is implemented using MATLAB software. Finally, the performance of the proposed algorithm is tested and the results for the 5-bus,30-bus, and 34-bus Nigerian power networks are presented.