期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Elucidating the dominant reaction mechanism of methanol-to-olefins conversion in H-SAPO-18: A first-principles study 被引量:2
1
作者 Chuan-Ming Wang Yang-Dong Wang Zai-Ku Xie 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第7期1272-1279,共8页
The reaction mechanism of zeolite- or zeotype-catalyzed methanol-to-olefins(MTO) conversion is still a subject of debate. Employing periodic density functional theory calculations, the olefin-based cycle was studied... The reaction mechanism of zeolite- or zeotype-catalyzed methanol-to-olefins(MTO) conversion is still a subject of debate. Employing periodic density functional theory calculations, the olefin-based cycle was studied using tetramethylethene(TME) as a representative olefinic hydrocarbon pool in H-SAPO-18 zeotype. The overall free energy barrier at 673 K was calculated and found to be less than 150 kJ/mol in the TME-based cycle, much lower than those in the aromatic-based cycle(〉 200 kJ/mol), indicating that olefins themselves are the dominant active hydrocarbon pool species in H-SAPO-18. The similarity of the intermediates involved between the aromatic-based cycle and the olefin-based cycle was also highlighted, revealing that both cycles were pattern-consistent. The selectivity related to the distribution of cracking precursors, such as higher olefins or carbenium ions, as a result of the olefin-based cycle for the MTO conversion. The enthalpy barrier of the crack-ing step scaled linearly with the number of carbon atoms of cracking precursors to produce ethene or propene with ethene being much less favored than propene for cracking of C7 and higher pre-cursors. This work highlighted the importance of the olefin-based cycle in H-SAPO-18 for the MTO conversion and established the similarity between the olefin-based and aromatic-based cycles. 展开更多
关键词 Methanol-to-olefins conversion hydrocarbon pool reaction mechanism Olefin-based hydrocarbon pool Density functional theory H-SAPO-18 zeotype
下载PDF
Enhancement of catalytic and anti-carbon deposition performance of SAPO-34/ZSM-5/quartz films in MTA reaction by Si/Al ratio regulation 被引量:2
2
作者 Jiaxin Wu Chenxiao Wang +6 位作者 Xianliang Meng Haichen Liu Ruizhi Chu Guoguang Wu Weisong Li Xiaofeng Jiang Deguang Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期314-324,共11页
In order to further improve the catalytic performance of zeolite catalyst for methanol to aromatics(MTA)technology, the double-tier SAPO-34/ZSM-5/quartz composite zeolite films were successfully synthesized via hydrot... In order to further improve the catalytic performance of zeolite catalyst for methanol to aromatics(MTA)technology, the double-tier SAPO-34/ZSM-5/quartz composite zeolite films were successfully synthesized via hydrothermal crystallization. The Si/Al ratio of SAPO-34 film was used as the only variable to study this material. The composite zeolite material with 0.6Si/Al ratio of SAPO-34 has the largest mesoporous specific surface area and the most suitable acid distribution. The catalytic performance for the MTA process showed that 0.6-SAPO-34/ZSM-5/quartz film has as high as 50.3% benzene-toluenexylene selectivity and 670 min lifetime. The MTA reaction is carried out through the path we designed to effectively avoid the hydrocarbon pool circulation of ZSM-5 zeolite, so as to improve the aromatics selectivity and inhibit the occurrence of deep side reactions to a great extent. The coke deposition behavior was monitored by thermogravimetric analysis and gas chromatograph/mass spectrometer, it is found that with the increase of Si/Al ratio, the active intermediates changed from low-substituted methylbenzene to high-substituted methylbenzene, which led to the rapid deactivation of the catalyst. This work provides a possibility to employ the synergy effect of composite zeolite film synthesizing anti-carbon deposition catalyst in MTA reaction. 展开更多
关键词 Composite zeolite film Methanol to aromatics Anti-carbon deposition Si/Al ratio hydrocarbon pool circulation mechanism
下载PDF
Methylation of toluene with methanol over HZSM-5:A periodic density functional theory investigation 被引量:11
3
作者 闻振浩 杨大强 +2 位作者 杨帆 魏振浩 朱学栋 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1882-1890,共9页
Periodic density functional theory was applied to investigate the reaction mechanism for the methylation of toluene with methanol over HZSM-5.The results indicated that toluene could be methylated at its para,meta,ort... Periodic density functional theory was applied to investigate the reaction mechanism for the methylation of toluene with methanol over HZSM-5.The results indicated that toluene could be methylated at its para,meta,ortho and geminal positions via a concerted or stepwise pathway.For the concerted pathway,the calculated free energy barriers for the para,meta,ortho and geminal methylation reactions were 167,138,139 and 183 kJ/mol,respectively.For the stepwise pathway,the dehydration of methanol was found to be the rate-determining step with a free energy barrier of145 kj/mol,whereas the free energy barriers for the methylation of toluene at its para,meta,ortho and geminal positions were 127,105,106 and 114 kj/mol,respectively.Both pathways led to the formation of C8H11^+ species as important intermediates,which could back-donate a proton to the zeolite framework via a reorientation process or form gaseous products through demethylation.Methane was formed via an intramolecular hydrogen transfer reaction from a ring carbon of the C8H11^+ species to the carbon of the methyl group,with calculated energy barriers of 136,132 and134 kj/mol for the para,meta and ortho C8H11^+ species,respectively.The calculated free energy barriers for the formation of para-,meta- and ortho-xylene indicated that the formation of the para-xylene had the highest energy barrier for both pathways. 展开更多
关键词 TOLUENE METHANOL PARA-XYLENE METHYLATION Density functional theory hydrocarbon pool mechanism
下载PDF
Understanding Zeolites Catalyzed Methanol-to-Olefins Conversion from Theoretical Calculations 被引量:3
4
作者 Chuanming Wang Yangdong Wang Zaiku Xie 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2018年第5期381-386,共6页
Zeolites catalyzed methanol-to-olefins (MTO) conversion provides an alternative process to produce light olefins such as ethene and propene from nonpetroleum resources. Despite of successful industrialization of the... Zeolites catalyzed methanol-to-olefins (MTO) conversion provides an alternative process to produce light olefins such as ethene and propene from nonpetroleum resources. Despite of successful industrialization of the MTO process, its detailed reaction mechanism is not yet well understood. Here we summarize our work on the hydrocarbon pool reaction mechanism based on theoretical calculations. We proposed that the olefins themselves are likely to be the dominating hydrocarbon pool species, and the distribution of cracking precursors and diffusion constraints affect the selectivity. The similarities between aromatic-based and olefin-based cycles are highlighted. 展开更多
关键词 zeolite catalysis methanol-to-olefins conversion hydrocarbon pool mechanism computational catalysis density functional theory
原文传递
Confinement effects in methanol to olefins catalysed by zeolites: A computational review 被引量:1
5
作者 German Sastre 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2016年第1期76-89,共14页
Small pore zeolites, containing 8-rings as the largest, are widely employed as catalysts in the process of methanol-to-olefins (MTO). Reactants and products dif- fuse with constraints through 8-rings and this is one... Small pore zeolites, containing 8-rings as the largest, are widely employed as catalysts in the process of methanol-to-olefins (MTO). Reactants and products dif- fuse with constraints through 8-rings and this is one of the reaction bottlenecks related to zeolite micropore topology. Small pore zeolites and silicon-aluminophosphates (SAPOs) containing cavities, where olefins are mainly formed through the hydrocarbon pool (HP) mechanism, are frequently tested for MTO. Shape selectivity of transition states within the side-chain methylation will be reviewed as this is one of the controlling steps of the MTO process, with particular attention to the role of hexam- ethylbenzene (HMB) and heptamethylbenzenium cation (HeptaMB~), which are the most tipically detected reaction intermediates, common to the paring and side-chain routes within the HP mechanism. The relative stability of these and other species will be reviewed in terms of confinement effects in different cage-based zeolites. The role of the different alkylating agents, methanol, dimethyl ether (DME), and surface methoxy species (SMS) will also be reviewed from the computational viewpoint. 展开更多
关键词 small pore zeolites SAPOs methanol-to-olefins hydrocarbon pool mechanism alkylation of poly-methylbenzenes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部