This paper evaluates the hydrocarbon prospectivity and play risks of “Bob” field in Niger Delta Basin, Nigeria. The aim is to enhance exploration success through improved approach/technique by incorporating risk ana...This paper evaluates the hydrocarbon prospectivity and play risks of “Bob” field in Niger Delta Basin, Nigeria. The aim is to enhance exploration success through improved approach/technique by incorporating risk analysis that previous studies have not fully considered. This approach combines a set of analyses including stratigraphic/structural, amplitude, petrophysical parameter, volumetric and play risk using a suite of well logs and 3D seismic data. Maximum amplitude anomaly map extracted on the surfaces of delineated 3 reservoirs revealed 6 prospects, namely: Dippers, Cranes, Turacos, Nicators, Jacanas and Pelicans with hydrocarbon accumulation. Petrophysical analysis showed ranges of values for porosity, permeability and water saturation of 0.21 to 0.23, 158.96 to 882.39 mD, and 0.07 to 0.11, respectively. The various prospects yielded the following stock tank volumes 12.73, 6.84, 3.84, 11.32, 7.42 and 4.76 Million barrels (Mbls) each respectively in a column of 66 ft reservoir sand in the study area. Play risk analysis results gave: Pelicans and Nicators (low), Turacos and Dippers (moderate), while Jacanas and Cranes show high risk with minimal promise for good oil accumulation. The prospects possess good reservoir petrophysical properties with low to moderate risk, thus, viable for commercial hydrocarbon production, which increases confidence in management decisions for production.展开更多
Based on the field outcrops surveyed,combined with recent published the regional tectonic evolution and geochronology data,we analyzed the lithologies and rock associations of strata,identified the sedimentary facies ...Based on the field outcrops surveyed,combined with recent published the regional tectonic evolution and geochronology data,we analyzed the lithologies and rock associations of strata,identified the sedimentary facies types,and discussed the distribution sedimentary facies and the hydrocarbon accumulation in the eastern Qiangtang basin during the Late Triassic–Jurassic.Marked by regional unconformities,there are two tectono-stratigraphic units(from the Carnian to the Norian and from the Rhaetian to the Kimmeridgian,respectively)in the eastern part of Qiangtang basin.We systematically described the distribution range,thickness variation and lithological characteristics of different formations in the tectonostratigraphic units.The Late Triassic-Jurassic is dominated by marine facies and marine-continental transitional facies.The marine-continental transitional facies include deltaic and tidallagoon facies.Marine facies including gentle carbonate slope,evaporative platform,restricted platform,littoral,neritic,bathyal and abysmal facies.The Carnian stage is dominated by littoral–neritic–bathyal–abysmal facies in the north Qiangtang depression otherwise the littoral–neritic facies in the south Qiangtang depression.The early Norian stage is dominated by carbonate gentle slope-mixed continental shelf facies.The late Norian,Bajocian,Callovian and Kimmeridgian stage are dominated by tidal flat-delta facies in the north Qiangtang depression and littoral-neritic facies in the south Qiangtang depression.The Bathonian and Oxfordian stage are dominated by evaporative platform-restricted platform-mixed continental shelf facies.The sedimentary facies formed zones from north to south and extended in an E–W direction.The Eastern Lower Uplift(ELU)played an important role in the division zones of sedimentary facies from north to south.During the Bathonian and Oxfordian,the ELU developed below the sea level and controlled the distribution of restricted platform,evaporative platform and platform margin.We analyzed 20 source rock samples from the upper Triassic-Jurassic.The total organic carbon(TOC)value from Qoimaco,Buqu and Adula Formations.of late TriassicJurassic in the eastern Qiangtang basin are ranges from 0.17~0.33%(average 0.28%),0.05~0.25%(average 0.15%)and 10.32~28.78%(average 19.33%),respectively.Obviously,the Adula Fm.developed good source rocks.The values of Tmax and S1+S2 in the Adula formation are 459-461℃(average 460℃)and 6.75-28.55 mg/g(average 18.18 mg/g),indicating that the Adula source rock has reached high-over-maturity stage.The bathyal,gentle slop and platform facie belts of the Upper Triassic can configurate the good hydrocarbon prospects in the northeastern area of the Qiangtang basin.展开更多
BasinMod 1D software with faulting module is used to model two synthetic wells taken from a geoseismic section in Exploration Block 2 in western Nepal to understand the burial and thermal history of exterior belt (Te...BasinMod 1D software with faulting module is used to model two synthetic wells taken from a geoseismic section in Exploration Block 2 in western Nepal to understand the burial and thermal history of exterior belt (Terai) and Siwalik fold and thrust belt. The study focuses the measured inputs of source and reservoir rocks of Surkhet Group consisting of Swat shale (2%), TOC and Melpani sandstone porosity (10%). The geohistory curves show rapid sedimentation and tectonic subsidence. The thermal history is constrained using a 20 ℃/km geothermal gradient for the exterior belt, whereas for the Siwalik fold and thrust belt, a two-step geothermal gradient is proposed using a 20 ℃/km for the upper 2,000 m and 23 ℃/km below this depth. The modeled values for maturity show that the Surkhet Group lies in the mid mature oil window in the exterior belt, but for the Siwalik fold and thrust belt, the hanging-wall Paleogene wedge is in the early mature stage, whereas the footwall Paleogene wedge is in the late mature stage. Oil generation for the Swat shales started at 6.3 Ma at 3,988 m depth with peak oil generation 2.4-1.3 Ma at 5,435-5,782 m depth in the exterior belt. However, the Siwalik fold and thrust belt modeling shows that the footwall Swat Formation has no oil generation capacity after the faulting episode, whereas it had been producing oil since about 8.5 Ma at 3,800 m with main phase ofoil generation at about 7 Ma at 4,600 m. The hanging-wall Swat Formation has been in the early mature stage of oil generation since faulting. The timing of structural trap formation window is set to 4.1-1.8 Ma based on geological evidence from the literature. The results show trap formation is more or less contemporaneous with hydrocarbon generation and expulsion and timing will be critical for assessments of the prospectivity.展开更多
The Mesozoic-Paleozoic marine residual basin in the South Yellow Sea(SYS) is a significant deep potential hydrocarbon reservoir. However, the imaging of the deep prospecting target is quite challenging due to the spec...The Mesozoic-Paleozoic marine residual basin in the South Yellow Sea(SYS) is a significant deep potential hydrocarbon reservoir. However, the imaging of the deep prospecting target is quite challenging due to the specific seismic-geological conditions. In the Central and Wunansha Uplifts, the penetration of the seismic wavefield is limited by the shallow high-velocity layers(HVLs) and the weak reflections in the deep carbonate rocks. With the conventional marine seismic acquisition technique, the deep weak reflection is difficult to image and identify. In this paper, we could confirm through numerical simulation that the combination of multi-level air-gun array and extended cable used in the seismic acquisition is crucial for improving the imaging quality. Based on the velocity model derived from the geological interpretation, we performed two-dimensional finite difference forward modeling. The numerical simulation results show that the use of the multi-level air-gun array can enhance low-frequency energy and that the wide-angle reflection received at far offsets of the extended cable has a higher signal-to-noise ratio(SNR) and higher energy. Therefore, we have demonstrated that the unconventional wide-angle seismic acquisition technique mentioned above could overcome the difficulty in imaging the deep weak reflectors of the SYS, and it may be useful for the design of practical seismic acquisition schemes in this region.展开更多
New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1...New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1-2 nT, mapping weak anomalies of 5-10 nT caused by mineralization effects at the contacts of hydrocarbons with host rocks, estimating depths to upper and lower boundaries of anom- alous magnetic sources, and estimating thickness of magnetic layers and boundaries of tectonic blocks. Horizontal dimensions of tectonic blocks in the so-called "seismic gap" region in the central Kuril Arc vary from 10 to 100 km, with typical dimensions of 25-30 km. The area of the "seismic gap" is a zone of intense tectonic activity and recent volcanism. Deep sources causing magnetic anomalies in the area are similar to the "magnetic belt" near Hokkaido. In the southern and central parts of Barents Sea, tectonic blocks with widths of 30-100 kin, and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated. Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea-Barents Sea paleorift indicate depths to the lower boundary of the layer of 12-30 km. Weak local magnetic anomalies of 2-5 nT in the northern and central Caspian Sea were identified using the new methods, and drilling confirms that the anomalies are related to concentrations of hydrocarbon. Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra. The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30-40 m and 150-200 m.展开更多
^57Fe Mossbauer spectroscopic study was carried out on the organic rich sedimentary samples collected at different depth intervals from newly drilled test well Chinnewala Tibba-1(CT-1) located in Jaisalmer Petrolife...^57Fe Mossbauer spectroscopic study was carried out on the organic rich sedimentary samples collected at different depth intervals from newly drilled test well Chinnewala Tibba-1(CT-1) located in Jaisalmer Petroliferous basin India. It is found that iron is mainly distributed in high spin Fe^3+and Fe^2+ state in clay minerals. The plot of Fe^2+/(Fe^2++ Fe^3+) indicates the presence of poor redox conditions in the samples.Results obtained are also compared with those already reported in the literature. This comparison shows that there may exist a correlation between prospecting of the basin, the redox environment in sediments and the nature of iron bearing minerals distributed in the sedimentary sequence.展开更多
文摘This paper evaluates the hydrocarbon prospectivity and play risks of “Bob” field in Niger Delta Basin, Nigeria. The aim is to enhance exploration success through improved approach/technique by incorporating risk analysis that previous studies have not fully considered. This approach combines a set of analyses including stratigraphic/structural, amplitude, petrophysical parameter, volumetric and play risk using a suite of well logs and 3D seismic data. Maximum amplitude anomaly map extracted on the surfaces of delineated 3 reservoirs revealed 6 prospects, namely: Dippers, Cranes, Turacos, Nicators, Jacanas and Pelicans with hydrocarbon accumulation. Petrophysical analysis showed ranges of values for porosity, permeability and water saturation of 0.21 to 0.23, 158.96 to 882.39 mD, and 0.07 to 0.11, respectively. The various prospects yielded the following stock tank volumes 12.73, 6.84, 3.84, 11.32, 7.42 and 4.76 Million barrels (Mbls) each respectively in a column of 66 ft reservoir sand in the study area. Play risk analysis results gave: Pelicans and Nicators (low), Turacos and Dippers (moderate), while Jacanas and Cranes show high risk with minimal promise for good oil accumulation. The prospects possess good reservoir petrophysical properties with low to moderate risk, thus, viable for commercial hydrocarbon production, which increases confidence in management decisions for production.
基金granted by the National Natural Science Foundation of China(Grant No.4187121&41630207)the Basic Scientific Research Projects of the Chinese Academy of Geological Sciences(Grant Nos.A1903、JYYWF20180903&JYYWF20182103)the work project of Chinese Geological Survey(Grant Nos.DD20160022、DD20160169、12120115026901&DD20190006)
文摘Based on the field outcrops surveyed,combined with recent published the regional tectonic evolution and geochronology data,we analyzed the lithologies and rock associations of strata,identified the sedimentary facies types,and discussed the distribution sedimentary facies and the hydrocarbon accumulation in the eastern Qiangtang basin during the Late Triassic–Jurassic.Marked by regional unconformities,there are two tectono-stratigraphic units(from the Carnian to the Norian and from the Rhaetian to the Kimmeridgian,respectively)in the eastern part of Qiangtang basin.We systematically described the distribution range,thickness variation and lithological characteristics of different formations in the tectonostratigraphic units.The Late Triassic-Jurassic is dominated by marine facies and marine-continental transitional facies.The marine-continental transitional facies include deltaic and tidallagoon facies.Marine facies including gentle carbonate slope,evaporative platform,restricted platform,littoral,neritic,bathyal and abysmal facies.The Carnian stage is dominated by littoral–neritic–bathyal–abysmal facies in the north Qiangtang depression otherwise the littoral–neritic facies in the south Qiangtang depression.The early Norian stage is dominated by carbonate gentle slope-mixed continental shelf facies.The late Norian,Bajocian,Callovian and Kimmeridgian stage are dominated by tidal flat-delta facies in the north Qiangtang depression and littoral-neritic facies in the south Qiangtang depression.The Bathonian and Oxfordian stage are dominated by evaporative platform-restricted platform-mixed continental shelf facies.The sedimentary facies formed zones from north to south and extended in an E–W direction.The Eastern Lower Uplift(ELU)played an important role in the division zones of sedimentary facies from north to south.During the Bathonian and Oxfordian,the ELU developed below the sea level and controlled the distribution of restricted platform,evaporative platform and platform margin.We analyzed 20 source rock samples from the upper Triassic-Jurassic.The total organic carbon(TOC)value from Qoimaco,Buqu and Adula Formations.of late TriassicJurassic in the eastern Qiangtang basin are ranges from 0.17~0.33%(average 0.28%),0.05~0.25%(average 0.15%)and 10.32~28.78%(average 19.33%),respectively.Obviously,the Adula Fm.developed good source rocks.The values of Tmax and S1+S2 in the Adula formation are 459-461℃(average 460℃)and 6.75-28.55 mg/g(average 18.18 mg/g),indicating that the Adula source rock has reached high-over-maturity stage.The bathyal,gentle slop and platform facie belts of the Upper Triassic can configurate the good hydrocarbon prospects in the northeastern area of the Qiangtang basin.
文摘BasinMod 1D software with faulting module is used to model two synthetic wells taken from a geoseismic section in Exploration Block 2 in western Nepal to understand the burial and thermal history of exterior belt (Terai) and Siwalik fold and thrust belt. The study focuses the measured inputs of source and reservoir rocks of Surkhet Group consisting of Swat shale (2%), TOC and Melpani sandstone porosity (10%). The geohistory curves show rapid sedimentation and tectonic subsidence. The thermal history is constrained using a 20 ℃/km geothermal gradient for the exterior belt, whereas for the Siwalik fold and thrust belt, a two-step geothermal gradient is proposed using a 20 ℃/km for the upper 2,000 m and 23 ℃/km below this depth. The modeled values for maturity show that the Surkhet Group lies in the mid mature oil window in the exterior belt, but for the Siwalik fold and thrust belt, the hanging-wall Paleogene wedge is in the early mature stage, whereas the footwall Paleogene wedge is in the late mature stage. Oil generation for the Swat shales started at 6.3 Ma at 3,988 m depth with peak oil generation 2.4-1.3 Ma at 5,435-5,782 m depth in the exterior belt. However, the Siwalik fold and thrust belt modeling shows that the footwall Swat Formation has no oil generation capacity after the faulting episode, whereas it had been producing oil since about 8.5 Ma at 3,800 m with main phase ofoil generation at about 7 Ma at 4,600 m. The hanging-wall Swat Formation has been in the early mature stage of oil generation since faulting. The timing of structural trap formation window is set to 4.1-1.8 Ma based on geological evidence from the literature. The results show trap formation is more or less contemporaneous with hydrocarbon generation and expulsion and timing will be critical for assessments of the prospectivity.
基金supported by the National Hi-tech Research and Development Program of China (863 Program) (No. 2013AA092501)the open foundation of Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources (No. MRE201303)the National Natural Science Foundation of China (Nos. 41176077, 41230318)
文摘The Mesozoic-Paleozoic marine residual basin in the South Yellow Sea(SYS) is a significant deep potential hydrocarbon reservoir. However, the imaging of the deep prospecting target is quite challenging due to the specific seismic-geological conditions. In the Central and Wunansha Uplifts, the penetration of the seismic wavefield is limited by the shallow high-velocity layers(HVLs) and the weak reflections in the deep carbonate rocks. With the conventional marine seismic acquisition technique, the deep weak reflection is difficult to image and identify. In this paper, we could confirm through numerical simulation that the combination of multi-level air-gun array and extended cable used in the seismic acquisition is crucial for improving the imaging quality. Based on the velocity model derived from the geological interpretation, we performed two-dimensional finite difference forward modeling. The numerical simulation results show that the use of the multi-level air-gun array can enhance low-frequency energy and that the wide-angle reflection received at far offsets of the extended cable has a higher signal-to-noise ratio(SNR) and higher energy. Therefore, we have demonstrated that the unconventional wide-angle seismic acquisition technique mentioned above could overcome the difficulty in imaging the deep weak reflectors of the SYS, and it may be useful for the design of practical seismic acquisition schemes in this region.
基金supported by the Russian Fund of Fundamental Research(Grant No.11-05-00280)
文摘New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1-2 nT, mapping weak anomalies of 5-10 nT caused by mineralization effects at the contacts of hydrocarbons with host rocks, estimating depths to upper and lower boundaries of anom- alous magnetic sources, and estimating thickness of magnetic layers and boundaries of tectonic blocks. Horizontal dimensions of tectonic blocks in the so-called "seismic gap" region in the central Kuril Arc vary from 10 to 100 km, with typical dimensions of 25-30 km. The area of the "seismic gap" is a zone of intense tectonic activity and recent volcanism. Deep sources causing magnetic anomalies in the area are similar to the "magnetic belt" near Hokkaido. In the southern and central parts of Barents Sea, tectonic blocks with widths of 30-100 kin, and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated. Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea-Barents Sea paleorift indicate depths to the lower boundary of the layer of 12-30 km. Weak local magnetic anomalies of 2-5 nT in the northern and central Caspian Sea were identified using the new methods, and drilling confirms that the anomalies are related to concentrations of hydrocarbon. Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra. The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30-40 m and 150-200 m.
文摘^57Fe Mossbauer spectroscopic study was carried out on the organic rich sedimentary samples collected at different depth intervals from newly drilled test well Chinnewala Tibba-1(CT-1) located in Jaisalmer Petroliferous basin India. It is found that iron is mainly distributed in high spin Fe^3+and Fe^2+ state in clay minerals. The plot of Fe^2+/(Fe^2++ Fe^3+) indicates the presence of poor redox conditions in the samples.Results obtained are also compared with those already reported in the literature. This comparison shows that there may exist a correlation between prospecting of the basin, the redox environment in sediments and the nature of iron bearing minerals distributed in the sedimentary sequence.