期刊文献+
共找到44,949篇文章
< 1 2 250 >
每页显示 20 50 100
Hydrocarbon-Degrading Bacteria and Paraffin from Polluted Seashores 9 Years after the Nakhodka Oil Spill in the Sea of Japan 被引量:3
1
作者 Kazue TAZAKI Hiroaki WATANABE +2 位作者 Siti Khodijah CHAERUN Koichi SHIRAKI Ryuji ASADA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第3期432-440,共9页
Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the... Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the affected sites. The biodegradation of hydrocarbons by microorganisms is one of the primary ways by which oil spill is eliminated from contaminated sites. One such spill was that of the Russian tanker the Nakhodka that spilled heavy oil into the Sea of Japan on January 2, 1997. The impact of the Nakhodka oil spill resulted in a viscous sticky fluid fouling the shores and affected natural ecosystems. This paper describes the weathering of hydrocarbon-degrading bacteria (genus Pseudomonas) and crystallized organic compounds from the Nakhodka oil spill-polluted seashores after nine years. The Nakhodka oil has hardened and formed crust of crystalline paraffin wax as shown by XRD analysis (0.422, 0.377, and 0.250 nm d-spacing) in association with graphite and calcite after 9 years of bioremediation. Anaerobic reverse side of the oil crust contained numerous coccus typed bacteria associated with halite. The finding of hydrocarbon-degrading bacteria and paraffin wax in the oil crust may have a significant effect on the weathering processes of the Nakhodka oil spill during the 9- year bioremediation. 展开更多
关键词 BIOREMEDIATION GRAPHITE HALITE heavy oil hydrocarbon-degrading bacteria paraffin wax Pseudomonas the Nakhodka oil spill
下载PDF
Isolation and Characterization of Hydrocarbon-Degrading Bacteria from Wastewaters in Ouagadougou, Burkina Faso 被引量:1
2
作者 Adama Sawadogo Otoidobiga C. Harmonie +3 位作者 Joseph B. Sawadogo Aminata Kaboré Alfred S. Traoré Dayéri Dianou 《Journal of Environmental Protection》 2014年第12期1183-1196,共14页
Lubricants are very often found in nature under waste-oil forms and represent for the environment a real danger of pollution due to the difficulty of their biodegradation. The situation is especially worrying in most ... Lubricants are very often found in nature under waste-oil forms and represent for the environment a real danger of pollution due to the difficulty of their biodegradation. The situation is especially worrying in most developing countries in particular those of Sub-Saharan Africa due to the absence of regulation or control. The present work aims to isolate bacterial strains able to degrade hydrocarbons which can later be used in biotechnology for environments depollution. Oil-contaminated wastewater samples were collected in Ouagadougou city (Burkina Faso) and then used as source of bacterial isolation. Appropriate amounts of samples were inoculated to a mineral salt medium (MS) with Total Quartz 9000 oil as sole carbon and energy source and then incubated for enrichment, prior to microbe isolation. Two bacterial strains namely S2 and S7 were isolated from the enrichment cultures. The strains were tested for their ability to degrade other hydrocarbons (i.e. gasoline, diesel oil, brake oil) and for temperature, pH and salt concentration ranges for growth before their biochemical characteristics were defined. Based on their morphological, physiological and biochemical traits, strains S2 and S7 belong to Acinetobacter and Pseudomonas genera, respectively. 展开更多
关键词 BIODEGRADATION HYDROCARBON bacteria Wastewater DEPOLLUTION Burkina Faso
下载PDF
Insight into the spoilage heterogeneity of meat-borne bacteria isolates with high-producing collagenase 被引量:2
3
作者 Haodong Wang Liangting Shao +3 位作者 Jinhao Zhang Xinglian Xu Jianjun Li Huhu Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1402-1409,共8页
Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in c... Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in collagen,which may be the primary target for degradation by spoilage microorganisms.In this work,a total of 17 isolates of spoilage bacteria that could secrete both collagenase and lipase were determined by raw-chicken juice agar(RJA)method,and the results showed that 7 strains of Serratia,Aeromonas,and Pseudomonas could significantly decompose the collagen ingredients.The gelatin zymography showed that Serratia liquefaciens(F5)and(G7)had apparent degradation bands around 50 kDa,and Aeromonas veronii(G8)and Aeromonas salmonicida(H8)had a band around.65 and 95 kDa,respectively.The lipase and collagenase activities were detected isolate-by-isolate,with F5 showing the highest collagenase activity.For spoilage ability on meat in situ,F5 performed strongest in spoilage ability,indicated by the total viable counts,total volatile basic nitrogen content,sensory scores,lipase,and collagenase activity.This study provides a theoretical basis for spoilage heterogeneity of strains with high-producing collagenase in meat. 展开更多
关键词 bacteria Chilled chicken HETEROGENEITY COLLAGENASE SPOILAGE
下载PDF
Multifunctional role of oral bacteria in the progression of nonalcoholic fatty liver disease 被引量:1
4
作者 En-Hua Mei Chao Yao +2 位作者 Yi-Nan Chen Shun-Xue Nan Sheng-Cai Qi 《World Journal of Hepatology》 2024年第5期688-702,共15页
Non-alcoholic fatty liver disease(NAFLD)encompasses a spectrum of liver disorders of varying severity,ultimately leading to fibrosis.This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis.The patho... Non-alcoholic fatty liver disease(NAFLD)encompasses a spectrum of liver disorders of varying severity,ultimately leading to fibrosis.This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis.The pathogenesis of NAFLD is closely associated with disturbances in the gut micr-obiota and impairment of the intestinal barrier.Non-gut commensal flora,particularly bacteria,play a pivotal role in the progression of NAFLD.Notably,Porphyromonas gingivalis,a principal bacterium involved in periodontitis,is known to facilitate lipid accumulation,augment immune responses,and induce insulin resistance,thereby exacerbating fibrosis in cases of periodontitis-associated NAFLD.The influence of oral microbiota on NAFLD via the“oral-gut-liver”axis is gaining recognition,offering a novel perspective for NAFLD management through microbial imbalance correction.This review endeavors to encapsulate the intricate roles of oral bacteria in NAFLD and explore underlying mechanisms,emphasizing microbial control strategies as a viable therapeutic avenue for NAFLD. 展开更多
关键词 Non-alcoholic fatty liver disease Oral bacteria Gut bacteria PERIODONTITIS Non-alcoholic steatohepatitis
下载PDF
Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria:Current state of the art 被引量:1
5
作者 Karolina Zuchowska Wojciech Filipiak 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第4期483-505,共23页
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr... Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity. 展开更多
关键词 Volatile organic compounds Pathogenic bacteria metabolites Metabolomics Microextraction techniques Gas chromatography-mass spectrometry In vivo breath analysis In vitro model
下载PDF
Antiseptic Efficacy of A Soap Made from Biosurfactants Isolated from Bacillus and Lactobacillus against Pathogenic Bacteria
6
作者 Frédéric Yannick Okouakoua Christian Aimé Kayath +10 位作者 Nicaise Saturnin Mokémiabeka Varelle Bervanie Ngala Elenga Digne Nedjea N’goma-Mona Ndelani Nkalla Lambi Sandra Paola Elenga Wilson Christ Dieuveil Bayakissa Malanda Rodinet Tsana Junior Patrick Sergy Bissoko1 Moïse Doria Kaya-Ongoto Duchel Jeanedvi Kinavouidi Etienne Nguimbi 《Advances in Microbiology》 CAS 2024年第1期31-58,共28页
The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological technique... The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological techniques (30 Bacillus and 30 Lactobacillus) and the ability to produce biosurfactants was demonstrated by a hydrocarbon emulsification index (E24). The emulsification indexes (E24) varied from 9% to 100% for Bacillus and from 33% to 100% for Lactobacillus as well. The antagonistic assay showed that biosurfactants were able to inhibit the formation of biofilms and growth of pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella typhirium, Shigella boydii and Proteus mirabilis. The biosurfactant consortium (BioC) from Bacillus consortium and from Lactobacillus was able to inhibit biofilm formation and the pathogens growth. The BioC was stable to alkaline pH and the temperatures stability of Biosurfactant was ranging from 50°C to 90°C. The soap was made by the cold saponification process using one biosurfactant consortium formulated. This soap has a pH of 10 and showed good cleaning power and good foam stability. Similarly, the soap showed good antiseptic power and disinfection power against all pathogens tested. Handwashing is critical to preventing disease transmission. The persistence of pathogens in waste water was evaluated. The BioS produced showed good disinfection power against all pathogens tested. The valor of reduction on the hands and in the waste water was significantly more than compared to the control soaps used. This soap could be used in the prevention, fighting, and treatment of bacterial and viral infections. 展开更多
关键词 ANTISEPTIC SOAP Biosurfactants BACILLUS LACTOBACILLUS DISINFECTION Pathogens bacteria
下载PDF
Diarrheal Diseases: A Review on Gastroenteritis Bacteria Global Burden and Alternative Control of Multidrug-Resistant Strains
7
作者 Ahéhéhinnou Ulrich Hilarion Adjovi Yann Christie Sissinto Fossou Joli Prince Mintognissè 《Advances in Microbiology》 CAS 2024年第10期493-512,共20页
Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and... Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and parasites. The implementation of preventive measures, including the maintenance of good food hygiene, effective water sanitation, and the development of rotavirus vaccines, has resulted in a notable reduction in the prevalence of the disease. However, the emergence of bacterial multidrug resistance due to the past or present inappropriate use of antibiotics has rendered bacterial infections a significant challenge. The objective of this review is threefold: firstly, to provide an overview of diarrheal diseases associated with bacteria;secondly, to offer a concise analysis of bacterial multidrug resistance on a global scale;and thirdly, to present the potential of filamentous fungi as an alternative solution to the challenge posed by multidrug-resistant strains. Campylobacter spp. is the most dangerous bacteria, followed by Shigella spp. and Vibrio cholerae in all age groups combined. However, Shigella spp. was the deadliest in children under five years of age and, together with E. coli, are the most antibiotic-resistant bacteria. With their highly developed secondary metabolism, fungi are a reservoir of natural bioactive compounds. 展开更多
关键词 Diarrheal Disease bacteria Multidrug Resistance Fungal Metabolites
下载PDF
The Preliminary Study on Screening and Application of Phthalic Acid-Degrading Bacteria
8
作者 Honghao Zhang Lin Yang +3 位作者 Rubing Xu Yuxiao Sun Yong Yang Yanyan Li 《Advances in Microbiology》 CAS 2024年第4期226-239,共14页
Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect ... Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect of tobacco continuous cropping caused by the accumulation of phthalic acid in the soil. In this study, phthalate degrading bacteria B3 is screened from continuous cropping tobacco soil. The results of biochemical identification and 16sDNA comparison show that the homology between degrading bacterium B3 and Enterobacter sp. is 99%. At the same time, the growth of Enterobacter hormaechei subsp. B3 and the degradation of phthalic acid under different environmental conditions are studied. The results show that the environment with a temperature of 30˚C, PH of 7, and inoculation amount of not less than 1.2%, which is the optimal growth conditions for Enterobacter sp. B3. In an environment with a concentration of phthalic acid not exceeding 500 mg/L, Enterobacter sp. B3 has a better effect on phthalic acid degradation, and the degradation rate can reach 77% in 7 d. The results of indoor potting experiments on tobacco show that the degradation rate of phthalic acid by Enterobacter B3 in the soil is about 45%, which can reduce the inhibitory effect of phthalic acid on the growth of tobacco seedlings. This study enriches the microbial resources for degrading phthalic acid and provides a theoretical basis for alleviating tobacco continuous cropping obstacles. 展开更多
关键词 Phthalic Acid Degrading bacteria Rhizosphere Soil
下载PDF
Nature’s Pharmacy under Siege: Investigating Antibiotic Resistance Pattern in Endophytic Bacteria of Medicinal Plants
9
作者 Bonoshree Sarkar Afroza Sultana +5 位作者 Nabila Nawar Binti Farhana Tasnim Chowdhury Sadia Afrin Mohammad Fahim Taibur Rahman Atiqur Rahman 《Advances in Microbiology》 CAS 2024年第4期183-208,共26页
Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, hos... Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, host endophytic bacteria that produce bioactive compounds. Understanding antibiotic resistance dynamics in these bacteria is vital for human health and antibiotic efficacy preservation. In this study, we investigated antibiotic resistance profiles in endophytic bacteria from five medicinal plants: Thankuni, Neem, Aparajita, Joba, and Snake plant. We isolated and characterized 113 endophytic bacteria, with varying resistance patterns observed against multiple antibiotics. Notably, 53 strains were multidrug-resistant (MDR), with 14 exhibiting extensive drug resistance (XDR). Thankuni-associated bacteria displayed 44% MDR and 11% XDR, while Neem-associated bacteria showed higher resistance (60% MDR, 13% XDR). Aparajita-associated bacteria had lower resistance (22% MDR, 6% XDR), whereas Joba-associated bacteria exhibited substantial resistance (54% MDR, 14% XDR). Snake plant-associated bacteria showed 7% MDR and 4% XDR. Genus-specific distribution revealed Bacillus (47%), Staphylococcus (21%), and Klebsiella (11%) as major contributors to MDR. Our findings highlight diverse drug resistance patterns among plant-associated bacteria and underscore the complexity of antibiotic resistance dynamics in diverse plant environments. Identification of XDR strains emphasizes the severity of the antibiotic resistance problem, warranting further investigation into contributing factors. 展开更多
关键词 Antibiotic Resistance Endophytic bacteria Medicinal Plants Drug Resistance
下载PDF
Nanomotion of bacteria to determine metabolic profile
10
作者 S.N.Pleskova E.V.Lazarenko +4 位作者 N.A.Bezrukov R.N.Kriukov A.V.Boryakov M.E.Dokukin S.I.Surodin 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期1-9,共9页
In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possibl... In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possible to detect bacterial nanomotion using an AFM detection system.The results show that the nanomotion characteristics depend on the bacterial strain,and that nanomotion can be used to sense the metabolic activity of bacteria because the oscillations are sensitive to the food preferences of the bacteria and the type of surrounding medium. 展开更多
关键词 Nanomotion bacteria CANTILEVER OSCILLATION Atomic force microscopy METABOLISM
下载PDF
Isolation,identification,and evaluation of intestinal bacteria in Macrobrachium rosenbergii
11
作者 Xiuxin ZHAO Jinping LUO +7 位作者 Peimin LIU Hao HUANG Zhenheng CHENG Xin PENG Qiongying TANG Guoliang YANG Shaokui YI Quanxin GAO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1710-1721,共12页
Probiotics are live microbial food supplements that have been shown to have beneficial effects on animal health.Endogenous probiotic bacteria have long been used for their proposed health promoting properties and have... Probiotics are live microbial food supplements that have been shown to have beneficial effects on animal health.Endogenous probiotic bacteria have long been used for their proposed health promoting properties and have become a hot research topic in growth improvement in aquaculture.The endogenous probiotic bacteria from intestines of Macrobrachium rosenbergii(giant river prawn)was explored for their probiotic potential,from which 367 bacterial strains were isolated from the intestine of M.rosenbergii.After 16 S rDNA sequence analysis,234 isolates were identified as Lactococcus garvieae,which accounted for 63.76%of the total number of culturable intestinal bacteria,suggesting that this bacterium was the main component of the microbiota.Furthermore,to reveal the probiotic properties of L.garvieae,this isolated bacterial strain was characterized morphologically,physiologically,and biochemically.Its enzyme production capacity,bacteriostatic activity,and resistance to acid,high temperature,and pH,were assessed.In vitro experiments showed that the L.garvieae(No.C 6 a 2)had a fast growth rate and entered the logarithmic phase rapidly.Besides,it had characteristics of acid-production and resistance,enzyme-producing capacity,and strong antibacterial activity against pathogenic Staphylococc us aureus,Aeromonas hydrophila,and Aeromonas veronii.However,it lacked the ability to tolerate high temperature.Our results provide novel data to deepen our understanding of the intestinal bacteria structure of M.rosenbergii and valuable information for probiotic screening and the application for M.rosenbergii. 展开更多
关键词 Macrobrachium rosenbergii intestinal bacteria probiotic Lactococcus garvieae
下载PDF
Integrated Effects of Phosphate Rock and Chemical Fertilizers on the Dynamics of Soil Bacterial in Acidic Rice Paddy Soils of Man (Ivory Coast)
12
作者 Affi Jeanne Bongoua-Devisme Sainte Adélaïde Ahya Edith Kouakou +1 位作者 Konan-Kan Hippolyte Kouadio Franck Michaël Lemonou Bahan 《Advances in Microbiology》 CAS 2024年第10期513-531,共19页
In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization ... In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle. 展开更多
关键词 Phosphate Amendments Phosphate Solubilizing bacteria P-Cycle Genes Chemical Fertilizer
下载PDF
Synthesis of Silver Nanoparticles from Honeybees and Its Antibacterial Potential
13
作者 Akamu J. Ewunkem Niore’s Johnson +3 位作者 A’lyiha F. Beard Ilunga Tshimanga Brittany Justice Jeffery Meixner 《Open Journal of Medical Microbiology》 2024年第1期77-92,共16页
Honeybees (Apis mellifera) are important pollinators of flowering plants and agricultural crops contributing annually to billions of dollars in revenues to crop production. Honeybees have an average lifespan between 8... Honeybees (Apis mellifera) are important pollinators of flowering plants and agricultural crops contributing annually to billions of dollars in revenues to crop production. Honeybees have an average lifespan between 8 weeks to 5 years. Dead honeybees are abundantly available in beehives and can be utilized as an alternative source to synthesize nanoparticles. In recent years, biologically synthesized nanoparticles have been preferred over their chemical counterparts. However, honeybee-based-green synthesis of nanoparticles has not been explored yet. Herein, we report the biosynthesis of silver nanoparticles from honeybees and its antibacterial activity. The synthesis of silver nanoparticles was monitored visually through a gradual change in color. Furthermore, the biosynthesized nanoparticles were confirmed and characterized by UV-visible spectroscopy. Scanning Electron Microscope was utilized to analyze the average size and morphologies of the biosynthesized nanoparticles. Subsequently, the antibacterial potential of the biosynthesized silver nanoparticles was tested against selected Gram-positive and Gram-negative bacterial strains. It was found that a distinct color change from yellow to brown in the reaction solution suggested the formation of silver nanoparticles. The biosynthesized nanoparticles exhibited absorption maxima at 430 nm. The SEM analysis confirmed the spherical and cuboidal shape of the biosynthesized silver nanoparticles with a size range between 10 - 40 nm. Furthermore, the biosynthesized silver nanoparticles exhibited strong antimicrobial potential against tested Gram-positive and Gram-negative bacteria strains by aggregating on the cell surface. This study showcases the biomedical and agricultural applications of biosynthesized silver nanoparticles from honeybee wings. . 展开更多
关键词 HONEYBEE bacteria Green Synthesis Nanoparticles ANTIMICROBIAL
下载PDF
Soybean(Glycine max)rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorusmineralizing-related bacteria in phosphate deficient acidic soils
14
作者 Qianqian Chen Qian Zhao +9 位作者 Baoxing Xie Xing Lu Qi Guo Guoxuan Liu Ming Zhou Jihui Tian Weiguo Lu Kang Chen Jiang Tian Cuiyue Liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1685-1702,共18页
Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba... Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus. 展开更多
关键词 organic phosphorus acid phosphatase SOYBEAN bacterial community phoC-harboring bacteria RHIZOSPHERE
下载PDF
Characterisation of the Bacteria and Archaea Community Associated with Wild Oysters, At Three Possible Restoration Sites in the North Sea
15
作者 Natacha M. S. Juste-Poinapen Yang Lu +2 位作者 Blanca Bolaños De Hoyos George C. Birch Camille Saurel 《Open Journal of Marine Science》 2024年第2期19-40,共22页
With 85% of the global oyster reefs destroyed, there is an urgent need for large scale restoration to benefit from the ecosystem services provided by biogenic oyster reefs and their associated biodiversity, including ... With 85% of the global oyster reefs destroyed, there is an urgent need for large scale restoration to benefit from the ecosystem services provided by biogenic oyster reefs and their associated biodiversity, including microorganisms that drive marine biogeochemical cycles. This experiment established a baseline for the monitoring of the bacterial and archaeal community associated with wild oysters, using samples from their immediate environment of the Voordelta, with cohabiting Crassostrea gigas and Ostrea edulis, Duikplaats with only C. gigas attached to rocks, and the Dansk Skaldyrcentre, with no onsite oysters. The microbial profiling was carried out through DNA analysis of samples collected from the surfaces of oyster shells and their substrate, the sediment and seawater. Following 16S rRNA amplicon sequencing and bioinformatics, alpha indices implied high species abundance and diversity in sediment but low abundance in seawater. As expected, Proteobacteria, Bacteroidetes, Firmicutes and Thaumarchaeota dominated the top 20 OTUs. In the Voordelta, OTUs related to Colwellia, Shewanella and Psychrobium differentiated the oysters collected from a reef with those attached to rocks. Duikplaats were distinct for sulfur-oxidizers Sulfurimonas and sulfate-reducers from the Sva 0081 sediment group. Archaea were found mainly in sediments and the oyster associated microbiome, with greater abundance at the reef site, consisting mostly of Thaumarchaeota from the family Nitrosopumilaceae. The oyster free site displayed archaea in sediments only, and algal bloom indicator microorganisms from the Rhodobacteraceae, Flavobacteriaceae family and genus [Polaribacter] huanghezhanensis, in addition to the ascidian symbiotic partner, Synechococcus. This study suggests site specific microbiome shifts, influenced by the presence of oysters and the type of substrate. 展开更多
关键词 Oyster Reefs MICROBIOME Marine bacteria Marine Archaea RESTORATION
下载PDF
Improving dryland maize productivity and water efficiency with heterotrophic ammonia-oxidizing bacteria via nitrification and cytokinin activity
16
作者 Xiaoling Wang Jiawei Cao +4 位作者 Runhong Sun Wei Liu Lin Qi Peng Song Shenjiao Yang 《The Crop Journal》 SCIE CSCD 2024年第3期880-887,共8页
A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heter... A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heterotrophic ammonia-oxidizing bacteria(HAOB)strain S2_8_1 was used.Six treatments were applied:(1)no irrigation+HAOB strain(DI),(2)no irrigation+blank culture medium(DM),(3)no irrigation control(DCK),(4)irrigation+HAOB(WI),(5)irrigation+blank culture medium(WM),and(6)irrigation control(WCK).Results revealed that HAOB treatment increased maize growth,yield,and water use efficiency over controls,regardless of whether the year was wet or dry.This improvement was attributed to the accelerated nitrification in the rhizosphere soil due to HAOB inoculation,which subsequently led to increased levels of leaf cytokinins.Overall,these findings suggest that HAOB inoculation holds promise as a strategy to boost water use efficiency and maize productivity in dryland agriculture. 展开更多
关键词 Heterotrophic ammonia-oxidizing bacteria Rhizosphere soil nitrification CYTOKININ MAIZE Dryland agriculture
下载PDF
Co-inoculation of Debaryomyces hansenii and lactic acid bacteria: a strategy to improve the taste and odour profiles of dry sausages
17
作者 Rongxin Wen Yumeng Sui +4 位作者 Jiaqi Liu Huiping Wang Baohua Kong Ligang Qin Qian Chen 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3273-3283,共11页
The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sau... The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sausages were investigated.The co-inoculated sausages showed higher free amino acid and organic acid contents than the non-inoculated control and sausages inoculated with D.hansenii alone.Meanwhile,the sausages inoculated with D.hansenii+L.plantarum,D.hansenii+L.sakei and D.hansenii+L.curvatus had the highest contents of aldehydes,esters and alcohols,respectively.The results of electronic tongue,electronic nose and sensory evaluation demonstrated that compared with the sausage inoculated with D.hansenii,the sour taste and fl oral odour increased and the fatty odour decreased in the sausage inoculated with D.hansenii+L.sakei;this was more favourable for the development of a desirable fl avour in sausages.Moreover,the partial least squares regression analysis indicated that 10 taste and 33 odour compounds were mainly responsible for the differences in the flavour profiles among the sausages.Overall,these findings contributed to a more comprehensive understanding of the formation of sensory characteristics in dry sausages co-inoculated with yeast and LAB. 展开更多
关键词 Debaryomyces hansenii Lactic acid bacteria Dry sausage CO-INOCULATION Flavour profile
下载PDF
Distribution of pathogenic bacteria and antimicrobial sensitivity of eye infections in Suzhou
18
作者 Li Zhang Hai-Zhang You +4 位作者 Guo-Hui Wang Wei Xu Jian-Shan Li Qing-Liang Zhao Shu Du 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第4期700-706,共7页
AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collecte... AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collected in this study,and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed.RESULTS:Among the 155 patients(age from 12 to 87 years old,with an average age of 57,99 males and 56 females)with eye infections(160 eyes:74 in the left eye,76 in the right eye and 5 in both eyes,all of which were exogenous),71(45.81%)strains were gram-positive bacteria,23(14.84%)strains were gram-negative bacteria and 61(39.35%)strains were fungi.Gram-positive bacteria were highly resistant to penicillin and erythromycin(78.87%and 46.48%respectively),but least resistant to vancomycin at 0.Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole(100%and 95.65%respectively),but least resistant to meropenem at 0.Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences(P<0.05)in the resistance of both to cefoxitin,cotrimoxazole,levofloxacin,cefuroxime,ceftriaxone and ceftazidime,and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria.The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva,cornea,aqueous humor or vitreous body and other eye parts.Besides,Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections.CONCLUSION:Gram-positive bacteria are the dominant bacteria in eye infections,followed by gram-negative bacteria and fungi.Considering the resistance of gramnegative bacteria to multiple drugs,monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections. 展开更多
关键词 eye infection pathogenic bacteria drug resistance antimicrobial sensitivity test
下载PDF
Stress corrosion cracking behavior of buried oil and gas pipeline steel under the coexistence of magnetic field and sulfate-reducing bacteria
19
作者 Jian-Yu He Fei Xie +3 位作者 Dan Wang Guang-Xin Liu Ming Wu Yue Qin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1320-1332,共13页
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env... Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence. 展开更多
关键词 Magnetic field Sulfate-reducing bacteria Film layer Stress corrosion cracking Oil and gas pipelines
下载PDF
The Impact of Nitrogen-Fixing Bacteria, Iron, and Zinc Foliar Application on Dry Land Yellow Mustard (Brassica juncea) Grain and Oil Production
20
作者 Saeid Zehtab Salmasi Haleh Nasiri +2 位作者 Rezvan Heshmati Mohammad Reza Sarikhani Yagoub Raei 《Agricultural Sciences》 2024年第7期719-728,共10页
The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosp... The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability. 展开更多
关键词 Nitrogen Fixing bacteria Yellow Mustard Dry Land Farming IRON ZINC Foliar Application
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部