Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalyst...Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method.展开更多
We report a one‐pot surfactant‐free wet‐chemical reduction approach to the synthesis of palladium/titanium nitride(Pd/TiN)and Pd/carbon(Pd/C)composites,in which^5 nm Pd NPs were uniformly dispersed on TiN or C.In t...We report a one‐pot surfactant‐free wet‐chemical reduction approach to the synthesis of palladium/titanium nitride(Pd/TiN)and Pd/carbon(Pd/C)composites,in which^5 nm Pd NPs were uniformly dispersed on TiN or C.In terms of catalytic performance,Pd/TiN showed enhanced efficiency and stability compared with those of Pd/C and bare TiN in the electrocatalytic hydrodechlorination(EHDC)reaction of 2,4‐dichlorophenol(2,4‐DCP)in aqueous solution.The superior performance of Pd/TiN arises from the promotion effect of TiN.Strong metal‐support interactions modified the electronic structure of Pd,which optimized generation of H*ads and 2,4‐DCP adsorption/activation.The cathode potential plays a vital role in controlling the EHDC efficiency and the product distribution.A working potential of?0.80 V was shown to be optimal for achieving the highest EHDC efficiency and maximizing conversion of 2,4‐DCP to phenol(P).Our studies of the reaction pathway show that EHDC of 2,4‐DCP on Pd/TiN proceeded by 2,4‐DCP→p‐chlorophenol(p‐CP),o‐chlorophenol(o‐CP)→P;however,Pd/TiN presented little selectivity for cleavage of p‐C‐Cl vs o‐C‐Cl.This work presents a new approach to enhancing Pd performance towards EHDC through the effects of a support.The strategy demonstrated here could also be extended to design highly efficient catalysts for other hydrogenation reactions.展开更多
A novel supported liquid phase film catalyst: Supported PdCl2-(n-C4H9),N+Cl- molten salts was found to be an effective catalyst with good stability for selective hydrodechlorination of CCl2F2 (CFC-12) to its alternati...A novel supported liquid phase film catalyst: Supported PdCl2-(n-C4H9),N+Cl- molten salts was found to be an effective catalyst with good stability for selective hydrodechlorination of CCl2F2 (CFC-12) to its alternatives CH2F2 and CHClF2. Addition of CoCl2, GaCl3 and CuCl2 to PdCl2-(n-C4H9),N+Cl- modifies the catalytic performance of supported molten salts.展开更多
Electrocatalysis technology can effectively promote the hydrodechlorination of chloramphenicol(CAP)to reduce the bio-toxicity.However,there are still some challenges such as low degradation rate and poor stability.Her...Electrocatalysis technology can effectively promote the hydrodechlorination of chloramphenicol(CAP)to reduce the bio-toxicity.However,there are still some challenges such as low degradation rate and poor stability.Here,we prepared porous N,O co-doped carbon supported Pd nanoparticles composites(Pd NPs/NO-C)for electrocatalytic degradation of CAP.The doping of N and O not only effectively enhanced the interaction between substrate and CAP,promoting the mass transfer process,but also enhanced the anchoring effect on Pd nanoparticles,avoiding the occurrence of aggregation.The prepared composites achieved removal efficiency of CAP over 99%within 1 h,and the rate constant was as high as 6.72 h^(–1),outperforming previous reported electrocatalysts.Additionally,Pd NPs/NO-C composites showed a wide range of pH tolerance,excellent ion interference resistance and long-term stability.Our work unravels the importance of mass transfer processes in solution to electrocatalytic hydrodechlorination and provides new research ideas for catalysts design.展开更多
基金supported by the National Natural Science Foundation of China(22008212,22078292,21902124)Natural Science Basic Research Planning Shaanxi Province of China(2017ZDJC-29)+2 种基金Key Research and Development Project of Shaanxi Province(2018ZDXM-GY-173)China Postdoctoral Science Foundation(2019 M663848)Open cooperative innovation fund of Xi'an Institute of modern chemistry(SYJJ48).
文摘Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method.
基金supported by the National Natural Science Foundation of China(51508055,51502277)Chongqing Postdoctoral Science Foundation(Xm2016020)+2 种基金China Postdoctoral Science Foundation(2016M602660)Natural Science Foundation of Chongqing Science and Technology Commission(cstc2016jcyjA0154)Innovative Research Team of Chongqing(CXTDG201602014)~~
文摘We report a one‐pot surfactant‐free wet‐chemical reduction approach to the synthesis of palladium/titanium nitride(Pd/TiN)and Pd/carbon(Pd/C)composites,in which^5 nm Pd NPs were uniformly dispersed on TiN or C.In terms of catalytic performance,Pd/TiN showed enhanced efficiency and stability compared with those of Pd/C and bare TiN in the electrocatalytic hydrodechlorination(EHDC)reaction of 2,4‐dichlorophenol(2,4‐DCP)in aqueous solution.The superior performance of Pd/TiN arises from the promotion effect of TiN.Strong metal‐support interactions modified the electronic structure of Pd,which optimized generation of H*ads and 2,4‐DCP adsorption/activation.The cathode potential plays a vital role in controlling the EHDC efficiency and the product distribution.A working potential of?0.80 V was shown to be optimal for achieving the highest EHDC efficiency and maximizing conversion of 2,4‐DCP to phenol(P).Our studies of the reaction pathway show that EHDC of 2,4‐DCP on Pd/TiN proceeded by 2,4‐DCP→p‐chlorophenol(p‐CP),o‐chlorophenol(o‐CP)→P;however,Pd/TiN presented little selectivity for cleavage of p‐C‐Cl vs o‐C‐Cl.This work presents a new approach to enhancing Pd performance towards EHDC through the effects of a support.The strategy demonstrated here could also be extended to design highly efficient catalysts for other hydrogenation reactions.
文摘A novel supported liquid phase film catalyst: Supported PdCl2-(n-C4H9),N+Cl- molten salts was found to be an effective catalyst with good stability for selective hydrodechlorination of CCl2F2 (CFC-12) to its alternatives CH2F2 and CHClF2. Addition of CoCl2, GaCl3 and CuCl2 to PdCl2-(n-C4H9),N+Cl- modifies the catalytic performance of supported molten salts.
基金support received from the Basic Research Project of Leading Technology in Jiangsu Province(BK20202012)the National Natural Science Foundation of China(21938006and 21776190)+1 种基金China Postdoctoral Science Foundation(2020M681714)the Priority Academic Program Development of Higher Education Institutions(PAPD)in Jiangsu.
文摘Electrocatalysis technology can effectively promote the hydrodechlorination of chloramphenicol(CAP)to reduce the bio-toxicity.However,there are still some challenges such as low degradation rate and poor stability.Here,we prepared porous N,O co-doped carbon supported Pd nanoparticles composites(Pd NPs/NO-C)for electrocatalytic degradation of CAP.The doping of N and O not only effectively enhanced the interaction between substrate and CAP,promoting the mass transfer process,but also enhanced the anchoring effect on Pd nanoparticles,avoiding the occurrence of aggregation.The prepared composites achieved removal efficiency of CAP over 99%within 1 h,and the rate constant was as high as 6.72 h^(–1),outperforming previous reported electrocatalysts.Additionally,Pd NPs/NO-C composites showed a wide range of pH tolerance,excellent ion interference resistance and long-term stability.Our work unravels the importance of mass transfer processes in solution to electrocatalytic hydrodechlorination and provides new research ideas for catalysts design.