Applications of computational fluid dynamic(CFD) to the maritime industry continue to grow with the increasing development of computers.Numerical approaches have evolved to a level of accuracy which allows them to be ...Applications of computational fluid dynamic(CFD) to the maritime industry continue to grow with the increasing development of computers.Numerical approaches have evolved to a level of accuracy which allows them to be applied for hydrodynamic computations in industry areas.Hydrodynamic tests,especially planar-motion-mechanism(PMM) tests are simulated by CFD software-FLUENT,and all of the corresponding hydrodynamic coefficients are obtained,which satisfy the need of establishing the simulation system to evaluate maneuverability of vehicles during the autonomous underwater vehicle scheme design stage.The established simulation system performed well in tests.展开更多
In this paper, the effects of a quay or a solid jetty on hydrodynamic coefficients and vertical wave excitation forces on a ship with or without forward speed are discussed. A modified simple Green function technique ...In this paper, the effects of a quay or a solid jetty on hydrodynamic coefficients and vertical wave excitation forces on a ship with or without forward speed are discussed. A modified simple Green function technique is used to calculate the 2D coefficients while the strip theory is used to calculate the 3D coefficients. Wave excitation forces are also calculated with the strip theory. Numerical results are provided for hydrodynamic coefficients and vertical wave excitation forces on a 200 000 DWT tanker ship. It is found that the quay has a considerable effect on the hydrodynamic coefficients and wave excitation forces for a ship.展开更多
Numerical simulation and experimental tests were carried out to examine the hydrodynamic behaviors of a double-column floating system of gravity cage under wave conditions. A floating system of gravity cage can be tre...Numerical simulation and experimental tests were carried out to examine the hydrodynamic behaviors of a double-column floating system of gravity cage under wave conditions. A floating system of gravity cage can be treated as a small-sized floating structure when compared with the wavelengths. The main problem in calculating the wave loads on the small-sized floating structure is to obtain the reasonable force coefficients, which may differ from a submerged structure. In this paper, the floating system of gravity cage is simplified to a 2D problem, where the floating system is set symmetrically under wave conditions. The motion equations were deduced under wave conditions and a specific method was proposed to resolve the problem of wave forces acting on a small-sized floating system of gravity cage at water surface. Results of the numerical method were compared with those from model tests and the hydrodynamic coefficients Cn and Cr were studied. It is found that Cn ranges from 0.6 to 1.0 while Cr is between 0.4 and 0.6 in this study. The results are useful for research on the hydrodynamic behavior of the deep-water gravity sea cages.展开更多
-The hydrodynamic coefficients for each of two piles and three piles in both side-by-side arrangement and tandem arrangement under the action of irregular waves are experimentally investigated. These coefficients vary...-The hydrodynamic coefficients for each of two piles and three piles in both side-by-side arrangement and tandem arrangement under the action of irregular waves are experimentally investigated. These coefficients vary with the KC number, the relative pile spacing, the number of piles and the pile location, and their relationships are presented in this paper. They can be used in Morison Equation and other equations to calculate directly the in-line wave forces and the transverse forces on each pile in array.展开更多
The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or ...The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or in irregular waves, in pure waves or in wave-current coexisting field. In this paper, the normalization of hydrodynamic coefficients for various environmental conditions is discussed. When a proper definition of KC number and proper characteristic values of irregular waves are used, a unified relationship between C-d, C-m and KC number for regular waves, irregular waves, pure waves and wave-current coexisting field can be obtained.展开更多
Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations...Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations.Some hydrodynamic coefficients of high sensitivity to control and maneuver were chosen as the optimization objects in the algorithm.By using adaptive weight method to determine the weight and target function,the multi-objective optimization could be translated into single-objective optimization.For a certain kind of submarine,three typical maneuvers were chosen to be the objects of study:overshoot maneuver in horizontal plane,overshoot maneuver in vertical plane and turning circle maneuver in horizontal plane.From the results of computer simulations using primal hydrodynamic coefficient and optimized hydrodynamic coefficient,the efficiency of proposed method is proved.展开更多
One of the challenges in predicting the dynamic response of deepwater risers under vortex-induced vibration (VIV) is that it runs short of believable fluid loading model. Moreover, the hydrodynamic loading is also d...One of the challenges in predicting the dynamic response of deepwater risers under vortex-induced vibration (VIV) is that it runs short of believable fluid loading model. Moreover, the hydrodynamic loading is also difficult to be measured directly in the VIV experiments without disturbing the fluid field. In the present work, by means of a finite element analysis method based on the experimental data of the response displacements, the total instantaneous distributions of hydrodynamic forces together with the hydrodynamic coefficients on the riser model with large aspect ratio (length/ddiameter) of 1750 are achieved. The steady current speeds considered in the experiments of this work are ranging from 0.15 rn/s to 0.60 m/s, giving the Reynolds Number between 2400 and 9600. The hydrodynamic coefficients are evaluated at the fundamental frequency and in the higher order frequency components for both in-line and cross-flow directions. It is found that the Root-Mean Squared hydrodynamic forces of the higher order response frequency are larger than those of the fundamental response frequency. Negative lift or drag coefficients are found in the numerical results which is equivalent to the effect of fluid damping.展开更多
The purpose of this paper is to find some better methods for calculating in-line forces on a vertical circular cylinder and for analysing the hydrodynamic coefficients C_D and C_M in wave-current co-existing field. In...The purpose of this paper is to find some better methods for calculating in-line forces on a vertical circular cylinder and for analysing the hydrodynamic coefficients C_D and C_M in wave-current co-existing field. In this pa- per, in order to calculate hydrodynamic forces, the authors try to find a way of applying a great number of the re- sults about C_D and C_M for wave-only field in the case of wave-current co-existing field, and the results about C_D and C_M obtained in regular waves in the ease of irregular waves. Such a way may be of significance in engineering and further research.展开更多
The S-type test is simulated based on a ship manoeuvring mathematical model of 4 degrees of freedom(4-DOF);simultaneously,sensitivity analysis of the hydrodynamic coefficients in the mathematical model is implemented ...The S-type test is simulated based on a ship manoeuvring mathematical model of 4 degrees of freedom(4-DOF);simultaneously,sensitivity analysis of the hydrodynamic coefficients in the mathematical model is implemented by using an indirect method.The mathematical model is simplified by omitting the coefficients of smaller sensitivity according to the results of sensitivity analysis.The 10°/10° zigzag test and 35° turning circle manoeuvre are simulated with the original and the simplified mathematical models.The comparison of the simulation results shows the effectiveness of the sensitivity analysis and the validity of the simplified model.展开更多
The hydrodynamic characteristics of heave plates with different form edges of Truss Spar Platform are studied in this paper. Numerical simulations are carried out for the plate forced oscillation by the dynamic mesh m...The hydrodynamic characteristics of heave plates with different form edges of Truss Spar Platform are studied in this paper. Numerical simulations are carried out for the plate forced oscillation by the dynamic mesh method and user defined fimctions of FLUENT. The added mass coefficient Cm and the damping coefficient Cd of heave plate with tapering condition and the chamfer condition are calculated. The results show that, in a certain range, the hydrodynamic performance of heave plate after being tapered is better.展开更多
This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong...This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong University. Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm. The scaled model of ROV was constructed by 1:1.6. Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test. And dynamics model was derived as a set of equations, describing nonlinear and coupled 5-DOF spatial motions. Rotation control motion was simulated to verify spatial model proposed. Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment, and accomplish some more challengeable and practical missions.展开更多
-A composite pipeline is defined as a pipeline system composed of one big pipe and one or several small pipes. Based on the theory of wave- current interaction and physical model test, the hydrodynamic characteristics...-A composite pipeline is defined as a pipeline system composed of one big pipe and one or several small pipes. Based on the theory of wave- current interaction and physical model test, the hydrodynamic characteristics of the submarine composite pipeline in wave-current coexisting field (both regular and irregular waves) are investigated. The so-called 'modified diameter method' is used for analyzing the in-fine hydrodynamic coefficients of the composite pipeline, which are well related to KC number. The comparison of test data for regular and irregular waves shows that in the region of 90 > KC> 20, the results in these two cases can be unified. The effect of water depth is analyzed in details. The relationships between CD, CM and KC , which are based on the results of present research, may be used as a reference in engineering design.展开更多
This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffnes...This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SPT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investigated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.展开更多
In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing ta...In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three nondimensional parameters(Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients.The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.展开更多
For active wave absorbers in force-control mode,the optimal feedback(control)force provided by the control system depends on the hydrodynamic forces.This work investigates a piston-type wave absorber with different dr...For active wave absorbers in force-control mode,the optimal feedback(control)force provided by the control system depends on the hydrodynamic forces.This work investigates a piston-type wave absorber with different draft-to-water depth ratios,focusing on the frequency-dependent hydrodynamic coefficients,wave absorption efficiency,wave absorber displacement and velocity,and control force.Analytical results were derived based on potential flow theory,confirming that regular incident waves can be fully absorbed by the piston-type active wave absorber at any draft ratio by optimizing the control force.The results for the wave tank with a typical water depth of 3 m were studied in detail.The draft ratio has a strong influence on the hydrodynamic coefficients.At the maximum wave absorption efficiency,the displacement and velocity amplitudes are sensitive to the draft ratio in the low-frequency region,increase with decreasing draft ratio,and are independent of the mass of the wave absorber.The control force required can be extremely large for a draft ratio greater than 1/3.The control force increases significantly as the draft ratio increases.The mass of the wave absorber has a weak influence on the control force.A time-domain numerical method based on the boundary element method was developed to verify the analytical solutions.Perfect agreements between the analytical solutions and the numerical results were obtained.展开更多
The Reynolds-averaged Navier–Stokes(RANS)equation was solved using computational fluid dynamics to study the effect of the circulating tank wall on the hydrodynamic coefficient of an autonomous underwater vehicle(AUV...The Reynolds-averaged Navier–Stokes(RANS)equation was solved using computational fluid dynamics to study the effect of the circulating tank wall on the hydrodynamic coefficient of an autonomous underwater vehicle(AUV).Numerical results were compared with the experimental results in the circulating water tank of Harbin Engineering University.The numerical results of the model with different scale ratios under the same water in the flume were studied to investigate the effect of blockage on the hydrodynamic performance of AUV in the circulating flume model test.The results show that the hydrodynamic coefficient is stable with the scale reduction of the model.The influence of blocking effect on AUV is given by combining theoretical calculation with experiment.展开更多
The system with one floating rectangular body on the free surface and one submerged rectangular body has been applied to a wave energy conversion device in water of finite depth. The radiation problem by this device o...The system with one floating rectangular body on the free surface and one submerged rectangular body has been applied to a wave energy conversion device in water of finite depth. The radiation problem by this device on a plane incident wave is solved by the use of an eigenfunction expansion method, and a new analytical expression for the radiation velocity potential is obtained. The wave excitation force is calculated via the known incident wave potential and the radiation potential with a theorem of Haskind employed. To verify the correctness of this method, an example is computed respectively through the bound element method and analytical method. Results show that two numerical methods. are in good agreement, which shows that the present method is applicable. In addition, the trends of hydrodynamic coefficients and wave force are analyzed under different conditions by use of the present analytical method.展开更多
A plate submerged at a certain depth underneath the sea surface has been proposed as a structure type for different purposes, including motion response reduction, wave control, and wave energy harvesting. In the prese...A plate submerged at a certain depth underneath the sea surface has been proposed as a structure type for different purposes, including motion response reduction, wave control, and wave energy harvesting. In the present study, the three-dimensional wave radiation problem is investigated in the context of the linear potential theory for a submerged ring plate in isolation or attached to a floating column as an appendage. In the latter case, the ring plate is attached at a certain distance above the column bottom. The structure is assumed to undergo a heave motion. An analytical model is developed to solve the wave radiation problem via the eigenfunction expansion method in association with the region-matching technique. With the velocity potential being available, the hydrodynamic coefficients, such as added mass and radiation damping, are obtained through the direct pressure integration. An alternative solution of radiation damping has also been developed in this study, in which the radiation damping is related to the Kochin function in the wave radiation problem. After validating the present model, numerical analysis is performed in detail to assess the influence of various plate parameters, such as the plate size and submergence depth. It is noted that the additional added mass due to the attached ring plate is larger than that when the plate is in isolation. Meanwhile, the radiation damping of the column for the heave motion can vanish at a specific wave frequency by attaching a ring plate, corresponding to a condition that there exist no progressive waves in the exterior region.展开更多
Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision...Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS展开更多
A new method improves prediction of the motion of a hybrid monohull in regular waves. Stem section hydrodynamic coefficients of a hybrid monohull with harmonic oscillation were computed using the Reynolds Averaged Nav...A new method improves prediction of the motion of a hybrid monohull in regular waves. Stem section hydrodynamic coefficients of a hybrid monohull with harmonic oscillation were computed using the Reynolds Averaged Navier-Stokes Equations (RANSE). The governing equations were solved using the finite volume method. The VOF method was used for free surface treatment, and RNGK-ε turbulence model was employed in viscous flow calculation. The whole computational domain was divided into many blocks each with structured grids, and the dynamic process was treated with moving grids. Using a 2-D strip method and 2.5D theory with the correction hydrodynamic coefficients allows consideration of the viscous effect when predicting longitudinal motion of a hybrid monohull in regular waves. The method is effective at predicting motion of a hybrid monohull, showing that the viscous effect on a semi-submerged body cannot be ignored.展开更多
基金Supported by the Open Research Foundation of SKLabAUV,HEU under Grant No.2008003
文摘Applications of computational fluid dynamic(CFD) to the maritime industry continue to grow with the increasing development of computers.Numerical approaches have evolved to a level of accuracy which allows them to be applied for hydrodynamic computations in industry areas.Hydrodynamic tests,especially planar-motion-mechanism(PMM) tests are simulated by CFD software-FLUENT,and all of the corresponding hydrodynamic coefficients are obtained,which satisfy the need of establishing the simulation system to evaluate maneuverability of vehicles during the autonomous underwater vehicle scheme design stage.The established simulation system performed well in tests.
文摘In this paper, the effects of a quay or a solid jetty on hydrodynamic coefficients and vertical wave excitation forces on a ship with or without forward speed are discussed. A modified simple Green function technique is used to calculate the 2D coefficients while the strip theory is used to calculate the 3D coefficients. Wave excitation forces are also calculated with the strip theory. Numerical results are provided for hydrodynamic coefficients and vertical wave excitation forces on a 200 000 DWT tanker ship. It is found that the quay has a considerable effect on the hydrodynamic coefficients and wave excitation forces for a ship.
基金the Hi-Tech Research and Development Pro-gram (863) of China (Nos. 2006AA100301 and 2006BAD09A13) the Open Foundation of State Key Laboratory of Coastal Offshore Engineering of Dalian University of Technology (No. LP0604), China
文摘Numerical simulation and experimental tests were carried out to examine the hydrodynamic behaviors of a double-column floating system of gravity cage under wave conditions. A floating system of gravity cage can be treated as a small-sized floating structure when compared with the wavelengths. The main problem in calculating the wave loads on the small-sized floating structure is to obtain the reasonable force coefficients, which may differ from a submerged structure. In this paper, the floating system of gravity cage is simplified to a 2D problem, where the floating system is set symmetrically under wave conditions. The motion equations were deduced under wave conditions and a specific method was proposed to resolve the problem of wave forces acting on a small-sized floating system of gravity cage at water surface. Results of the numerical method were compared with those from model tests and the hydrodynamic coefficients Cn and Cr were studied. It is found that Cn ranges from 0.6 to 1.0 while Cr is between 0.4 and 0.6 in this study. The results are useful for research on the hydrodynamic behavior of the deep-water gravity sea cages.
文摘-The hydrodynamic coefficients for each of two piles and three piles in both side-by-side arrangement and tandem arrangement under the action of irregular waves are experimentally investigated. These coefficients vary with the KC number, the relative pile spacing, the number of piles and the pile location, and their relationships are presented in this paper. They can be used in Morison Equation and other equations to calculate directly the in-line wave forces and the transverse forces on each pile in array.
基金National Natural Science Foundation of China(No.59779005)
文摘The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or in irregular waves, in pure waves or in wave-current coexisting field. In this paper, the normalization of hydrodynamic coefficients for various environmental conditions is discussed. When a proper definition of KC number and proper characteristic values of irregular waves are used, a unified relationship between C-d, C-m and KC number for regular waves, irregular waves, pure waves and wave-current coexisting field can be obtained.
文摘Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations.Some hydrodynamic coefficients of high sensitivity to control and maneuver were chosen as the optimization objects in the algorithm.By using adaptive weight method to determine the weight and target function,the multi-objective optimization could be translated into single-objective optimization.For a certain kind of submarine,three typical maneuvers were chosen to be the objects of study:overshoot maneuver in horizontal plane,overshoot maneuver in vertical plane and turning circle maneuver in horizontal plane.From the results of computer simulations using primal hydrodynamic coefficient and optimized hydrodynamic coefficient,the efficiency of proposed method is proved.
基金supported by the 863 Program of China (Grant No. 2006AA09A103)partially supported by the National Natural Science Foundation of China (Grant No. 50921001)the open fund from the State Key Laboratory of Coastal and Offshore Engineering (Grant No. LP0904)
文摘One of the challenges in predicting the dynamic response of deepwater risers under vortex-induced vibration (VIV) is that it runs short of believable fluid loading model. Moreover, the hydrodynamic loading is also difficult to be measured directly in the VIV experiments without disturbing the fluid field. In the present work, by means of a finite element analysis method based on the experimental data of the response displacements, the total instantaneous distributions of hydrodynamic forces together with the hydrodynamic coefficients on the riser model with large aspect ratio (length/ddiameter) of 1750 are achieved. The steady current speeds considered in the experiments of this work are ranging from 0.15 rn/s to 0.60 m/s, giving the Reynolds Number between 2400 and 9600. The hydrodynamic coefficients are evaluated at the fundamental frequency and in the higher order frequency components for both in-line and cross-flow directions. It is found that the Root-Mean Squared hydrodynamic forces of the higher order response frequency are larger than those of the fundamental response frequency. Negative lift or drag coefficients are found in the numerical results which is equivalent to the effect of fluid damping.
文摘The purpose of this paper is to find some better methods for calculating in-line forces on a vertical circular cylinder and for analysing the hydrodynamic coefficients C_D and C_M in wave-current co-existing field. In this pa- per, in order to calculate hydrodynamic forces, the authors try to find a way of applying a great number of the re- sults about C_D and C_M for wave-only field in the case of wave-current co-existing field, and the results about C_D and C_M obtained in regular waves in the ease of irregular waves. Such a way may be of significance in engineering and further research.
基金the National Natural Science Foundation of China(No.51279106)the Special Research Fund for the Doctoral Program of Higher Education of China(No.20110073110009)
文摘The S-type test is simulated based on a ship manoeuvring mathematical model of 4 degrees of freedom(4-DOF);simultaneously,sensitivity analysis of the hydrodynamic coefficients in the mathematical model is implemented by using an indirect method.The mathematical model is simplified by omitting the coefficients of smaller sensitivity according to the results of sensitivity analysis.The 10°/10° zigzag test and 35° turning circle manoeuvre are simulated with the original and the simplified mathematical models.The comparison of the simulation results shows the effectiveness of the sensitivity analysis and the validity of the simplified model.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079097 and 50879057)Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51021004)
文摘The hydrodynamic characteristics of heave plates with different form edges of Truss Spar Platform are studied in this paper. Numerical simulations are carried out for the plate forced oscillation by the dynamic mesh method and user defined fimctions of FLUENT. The added mass coefficient Cm and the damping coefficient Cd of heave plate with tapering condition and the chamfer condition are calculated. The results show that, in a certain range, the hydrodynamic performance of heave plate after being tapered is better.
基金financially supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2008AA092301)
文摘This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong University. Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm. The scaled model of ROV was constructed by 1:1.6. Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test. And dynamics model was derived as a set of equations, describing nonlinear and coupled 5-DOF spatial motions. Rotation control motion was simulated to verify spatial model proposed. Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment, and accomplish some more challengeable and practical missions.
文摘-A composite pipeline is defined as a pipeline system composed of one big pipe and one or several small pipes. Based on the theory of wave- current interaction and physical model test, the hydrodynamic characteristics of the submarine composite pipeline in wave-current coexisting field (both regular and irregular waves) are investigated. The so-called 'modified diameter method' is used for analyzing the in-fine hydrodynamic coefficients of the composite pipeline, which are well related to KC number. The comparison of test data for regular and irregular waves shows that in the region of 90 > KC> 20, the results in these two cases can be unified. The effect of water depth is analyzed in details. The relationships between CD, CM and KC , which are based on the results of present research, may be used as a reference in engineering design.
基金the National Natural Science Foundation of China (10532070)Chinese Academy of Sciences (KJCX2-YW-L07)
文摘This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SPT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investigated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.
基金financially supported by the SINTEF Fisheries and Aquaculture of Norway and the National Natural Science Foundation of China(Grant No.51490674)
文摘In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three nondimensional parameters(Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients.The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.
文摘For active wave absorbers in force-control mode,the optimal feedback(control)force provided by the control system depends on the hydrodynamic forces.This work investigates a piston-type wave absorber with different draft-to-water depth ratios,focusing on the frequency-dependent hydrodynamic coefficients,wave absorption efficiency,wave absorber displacement and velocity,and control force.Analytical results were derived based on potential flow theory,confirming that regular incident waves can be fully absorbed by the piston-type active wave absorber at any draft ratio by optimizing the control force.The results for the wave tank with a typical water depth of 3 m were studied in detail.The draft ratio has a strong influence on the hydrodynamic coefficients.At the maximum wave absorption efficiency,the displacement and velocity amplitudes are sensitive to the draft ratio in the low-frequency region,increase with decreasing draft ratio,and are independent of the mass of the wave absorber.The control force required can be extremely large for a draft ratio greater than 1/3.The control force increases significantly as the draft ratio increases.The mass of the wave absorber has a weak influence on the control force.A time-domain numerical method based on the boundary element method was developed to verify the analytical solutions.Perfect agreements between the analytical solutions and the numerical results were obtained.
基金Supported by the National Natural Science Foundation of China(Grant No.51909040)the Fund of Science and Technology on Underwater Vehicle Technology(Grant No.JCKYS2022SXJQR-11)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(Grant No.LH2020E073)the Key Technology Research and Development Program of Shandong(Grant No.2020CXGC010702).
文摘The Reynolds-averaged Navier–Stokes(RANS)equation was solved using computational fluid dynamics to study the effect of the circulating tank wall on the hydrodynamic coefficient of an autonomous underwater vehicle(AUV).Numerical results were compared with the experimental results in the circulating water tank of Harbin Engineering University.The numerical results of the model with different scale ratios under the same water in the flume were studied to investigate the effect of blockage on the hydrodynamic performance of AUV in the circulating flume model test.The results show that the hydrodynamic coefficient is stable with the scale reduction of the model.The influence of blocking effect on AUV is given by combining theoretical calculation with experiment.
基金The Sino-Denmark Cooperation Research on high efficient MW wave power device under contractNo.2007DFA60490the National High-Teach Research and Development Program of China (863 Program) under contract No.2006AA05Z426the National Natural Science Foundation of China under contract No. 50679078
文摘The system with one floating rectangular body on the free surface and one submerged rectangular body has been applied to a wave energy conversion device in water of finite depth. The radiation problem by this device on a plane incident wave is solved by the use of an eigenfunction expansion method, and a new analytical expression for the radiation velocity potential is obtained. The wave excitation force is calculated via the known incident wave potential and the radiation potential with a theorem of Haskind employed. To verify the correctness of this method, an example is computed respectively through the bound element method and analytical method. Results show that two numerical methods. are in good agreement, which shows that the present method is applicable. In addition, the trends of hydrodynamic coefficients and wave force are analyzed under different conditions by use of the present analytical method.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51809037,51879039 and51490672)the Fundamental Research Funds for the Central Universities(Grant No.DUT16RC(4)048)
文摘A plate submerged at a certain depth underneath the sea surface has been proposed as a structure type for different purposes, including motion response reduction, wave control, and wave energy harvesting. In the present study, the three-dimensional wave radiation problem is investigated in the context of the linear potential theory for a submerged ring plate in isolation or attached to a floating column as an appendage. In the latter case, the ring plate is attached at a certain distance above the column bottom. The structure is assumed to undergo a heave motion. An analytical model is developed to solve the wave radiation problem via the eigenfunction expansion method in association with the region-matching technique. With the velocity potential being available, the hydrodynamic coefficients, such as added mass and radiation damping, are obtained through the direct pressure integration. An alternative solution of radiation damping has also been developed in this study, in which the radiation damping is related to the Kochin function in the wave radiation problem. After validating the present model, numerical analysis is performed in detail to assess the influence of various plate parameters, such as the plate size and submergence depth. It is noted that the additional added mass due to the attached ring plate is larger than that when the plate is in isolation. Meanwhile, the radiation damping of the column for the heave motion can vanish at a specific wave frequency by attaching a ring plate, corresponding to a condition that there exist no progressive waves in the exterior region.
基金Foundation item: Supported by the National Natural Science Foundation of China (51309123), National Key Basic Research and Development Plan (973 Plan, 2013CB036104), Jiangsu Province Natural Science Research Projects in Colleges and Universities (13KJB570002), Open Foundation of State Key Laboratory of Ocean Engineering (1407), "Qing Lan Project" of Colleges and Universities in Jiangsu Province, Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS
文摘A new method improves prediction of the motion of a hybrid monohull in regular waves. Stem section hydrodynamic coefficients of a hybrid monohull with harmonic oscillation were computed using the Reynolds Averaged Navier-Stokes Equations (RANSE). The governing equations were solved using the finite volume method. The VOF method was used for free surface treatment, and RNGK-ε turbulence model was employed in viscous flow calculation. The whole computational domain was divided into many blocks each with structured grids, and the dynamic process was treated with moving grids. Using a 2-D strip method and 2.5D theory with the correction hydrodynamic coefficients allows consideration of the viscous effect when predicting longitudinal motion of a hybrid monohull in regular waves. The method is effective at predicting motion of a hybrid monohull, showing that the viscous effect on a semi-submerged body cannot be ignored.