期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
THE CALCULATION OF IN-LINE FORCE ON A VERTICAL CIRCULAR CYLINDER AND ANALYSIS OF HYDRODYNAMIC COEFFICIENTS C_D AND C_M IN WAVE-CURRENT CO-EXISTING FIELD 被引量:1
1
作者 Kang Hai-gui Li Yu-cheng Wang Hong-rong, Dalian University of Technology, Dalian 116024, P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1991年第2期29-41,共13页
The purpose of this paper is to find some better methods for calculating in-line forces on a vertical circular cylinder and for analysing the hydrodynamic coefficients C_D and C_M in wave-current co-existing field. In... The purpose of this paper is to find some better methods for calculating in-line forces on a vertical circular cylinder and for analysing the hydrodynamic coefficients C_D and C_M in wave-current co-existing field. In this pa- per, in order to calculate hydrodynamic forces, the authors try to find a way of applying a great number of the re- sults about C_D and C_M for wave-only field in the case of wave-current co-existing field, and the results about C_D and C_M obtained in regular waves in the ease of irregular waves. Such a way may be of significance in engineering and further research. 展开更多
关键词 THE CALCULATION OF IN-LINE force ON A VERTICAL CIRCULAR CYLINDER AND ANALYSIS OF hydrodynamic coefficientS C_D AND C_M IN WAVE-CURRENT CO-EXISTING FIELD LINE CO
原文传递
Numerical simulation of flow past twin near-wall circular cylinders in tandem arrangement at low Reynolds number 被引量:2
2
作者 Guo-qiang Tang Chuan-qi Chen +1 位作者 Ming Zhao Lin Lu 《Water Science and Engineering》 EI CAS CSCD 2015年第4期315-325,共11页
Fluid flow past twin circular cylinders in a tandem arrangement placed near a plane wall was investigated by means of numerical simulations. The two-dimensional Navier-Stokes equations were solved with a three-step fi... Fluid flow past twin circular cylinders in a tandem arrangement placed near a plane wall was investigated by means of numerical simulations. The two-dimensional Navier-Stokes equations were solved with a three-step finite element method at a relatively low Reynolds number of Re -- 200 for various dimensionless ratios of 0.25 ≤ G/D ≤2.0 and 1.0 ≤ L/D ≤ 4.0, where D is the cylinder diameter, L is the center-to-center distance between the two cylinders, and G is the gap between the lowest surface of the twin cylinders and the plane wall. The influences of G/D and L/D on the hydrodynamic force coefficients, Strouhal numbers, and vortex shedding modes were examined. Three different vortex shedding modes of the near wake were identified according to the numerical results. It was found that the hydrodynamic force coefficients and vortex shedding modes are quite different with respect to various combinations of G/D and L/D. For very small values of G/D, the vortex shedding is completely suppressed, resulting in the root mean square (RMS) values of drag and lift coefficients of both cylinders and the Strouhal number for the downstream cylinder being almost zero. The mean drag coefficient of the upstream cylinder is larger than that of the downstream cylinder for the same combination of G/D and L/D. It is also observed that change in the vortex shedding modes leads to a significant increase in the RMS values of drag and lift coefficients. 展开更多
关键词 Navier-Stokes equations Finite element method Circular cylinder Vortex shedding mode hydrodynamic force coefficient
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部