Stability design of submarine pipelines is a very important procedure in submarine pipeline engineering design. The calculation of hydrodynamic forces caused by waves and currents acting on marine pipelines is an esse...Stability design of submarine pipelines is a very important procedure in submarine pipeline engineering design. The calculation of hydrodynamic forces caused by waves and currents acting on marine pipelines is an essential step in pipeline design for stability. The hydrodynamic forces-induced instabilities of submarine pipelines should be regarded as a wave/ current-pipeline-seabed interaction problem. This paper presents a review on hydrodynamic forces and stability research of submarine pipelines under waves and currents. The representative progress including the improved design method and guideline has been made for the marine pipelines engineering design through experimental investigations, numerical simu- lations and analytical models. Finally, further studies on this issue are suggested.展开更多
Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, ela...Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, elastic, geometric characteristics and hydraulic parameters. The purpose of this work is to investigate the dynamic behavior of control valves in the response to self-excited fluid flow. An analytical and numerical method is developed to simulate the dynamic and vibrational behavior of sliding dam valves, in response to flow excitation. In order to demonstrate the effectiveness of proposed model, the simulation results are validated with experimental ones. Finally, to achieve the optimal valve geometry, numerical results for various shapes of valves are compared. Rounded valve with the least amount of flow turbulence obtains lower fluctuations and vibration amplitude compared with the flat and steep valves. Simulation results demonstrate that with the optimal design requirements of valves, vibration amplitude can be reduced by an average to 30%.展开更多
In order to evaluate the ship’s maneuverability at the initial stage of ship design,this paper introduces a method of calculation of the nonlinear forces which depend on the local form of the hull.The calculation res...In order to evaluate the ship’s maneuverability at the initial stage of ship design,this paper introduces a method of calculation of the nonlinear forces which depend on the local form of the hull.The calculation results of the ship “ESSO OSAKA” are presented.展开更多
-The hydrodynamic forces on a smooth inclined circular cylinder exposed to oscillating flow were experimentally investigated at Reynolds number (Re) in the range 40000-200000 and Keulegan-Capenter number (KC) in the i...-The hydrodynamic forces on a smooth inclined circular cylinder exposed to oscillating flow were experimentally investigated at Reynolds number (Re) in the range 40000-200000 and Keulegan-Capenter number (KC) in the interval from 5-40. In the test, Re number and KC number were varied systematically. The inertia force coefficient (Cu) and the drag force coefficient (CD) in Morison equation were determined from the measured loads and the water particle kinematics. In this analysis a modified form of Morison equation was used since it uses the normal velocity and acceleration. Thus, the applicability of the Cross Flow Principle was assumed. This principle, simply stated, is as follows: the force acting in the direction normal to the axis of a cylinder placed at some oblique angle with the direction of flow is expressed in terms of the normal component of flow only, and the axial component is disregarded. Both the total in-line force coefficient (CF) and transverse force (lift) coefficient (Cf) were analyzed in terms of their maximum and root mean square values. All the in-line and lift force coefficients were given as a functions of Re and KC number. F'rom this research, it can be seen that the Cross-Flow Principle does not always work well. It seems valid for the total in- line force at high Re and large KC numbers. The Cu for a = 45 is larger and the CD for a = 45 is smaller than that for a = 90 ?and Re> 80000. The hydrodynamic force coefficients CD and Cu for the inclined cylinder are only the functions of the oblique angle (a) and KC number, but not of the Re number.展开更多
A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model ...A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model tests are carried out to consider the effects of exciting wave directions and types. Based on the experimental results, two hydrodynamic force models derived from Morisen equation and Wake model are presented respectively. By use of hydrodynamic force models suitable for free spanning submarine pipelines under earthquakes, diseretized equations of motion are obtained and finite element models are established to analyze dynamic response of free spanning submarine pipeline subjected to multi-support seismic excitations. The comparison of numerical results with experimental results shows that the improved Morison and Wake hydrodynamic force models could satisfactorily predict dynamic response on the free spanning submarine pipelines subjected to earthquakes.展开更多
In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing ta...In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three nondimensional parameters(Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients.The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.展开更多
Petroleum is produced from a beach-bar sand reservoir in the upper subsection of the 4th member of the Paleogene Shahejie Formation (Es4s) in the eastern Dongying Depression,penetrated by many wells in the Guangli-Q...Petroleum is produced from a beach-bar sand reservoir in the upper subsection of the 4th member of the Paleogene Shahejie Formation (Es4s) in the eastern Dongying Depression,penetrated by many wells in the Guangli-Qingnan area and this subsection still has further exploration potential.Using drilling and logging data,we analyzed the sand body types,emphasizing the sedimentary characteristics of the beach-bar sand bodies.Combining these data with the concepts of lacustrine and oceanic hydrodynamics,we explain the formation and distribution of the beach-bar sands in the eastern Dongying Depression.The connectivity between beach-bar sand bodies within each individual hydrodynamic zone is better than that between sand bodies in any two adjacent zones.The tempestite sand bodies developed in this area are characterized by typical storm deposits and are located at the bottoms of the beachbar sand bodies.They grade upward to normal shore and shallow-lacustrine beaches and bars.We also propose a new simple method to estimate the paleo-water depth using the thicknesses of the bar sand bodies in parasequences combined with the principle of hydrodynamic zonation.Based on the distribution of the beach-bar sands in parasequence set 3,we infer that the paleo-wind direction was from the north with an average paleo-wind force of 6 when the major beach-bar sand bodies formed.展开更多
The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG κ-ε turbulent model. The numerical simulation results are consistent with results observed ...The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG κ-ε turbulent model. The numerical simulation results are consistent with results observed by experimental means. A comparative study indicates that the corresponding errors of forces between calculated values and values observed in the experiment vary in the range of2.3%-11.2% and that the corresponding errors of velocities vary in the range of 1.3%-15.8%. The flow field numerical results show that upstream and vortices exist when the current passes over and through the surface of the reef model. This study suggests that the numerical simulation method can be applied to predict the forces and flow field associated with artificial reefs.展开更多
This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation an...This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation and vortex evolution,and compare the force terms generated by our artificial reef model.The numerical simulation agrees well with experimental results,showing the applicability of computational fluid dynamics to the hydrodynamics of an artificial reef.Furthermore,we numerically simulate the hydrodynamics of the reef model for seven velocities.The results show that the drag coefficient is approximately 1.21 in a self-modeling region for Reynolds numbers between 2.123×104and 9×104.Therefore,the upwelling height and current width of the flow field do not change significantly when the inflow velocity increases.Our study indicates that computational fluid dynamics can be applied to study the hydrodynamics of an artificial reef and offer clues to its construction.展开更多
The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or ...The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or in irregular waves, in pure waves or in wave-current coexisting field. In this paper, the normalization of hydrodynamic coefficients for various environmental conditions is discussed. When a proper definition of KC number and proper characteristic values of irregular waves are used, a unified relationship between C-d, C-m and KC number for regular waves, irregular waves, pure waves and wave-current coexisting field can be obtained.展开更多
Flume experiments and numerical simulation were conducted to characterize the hydrodynamics of a trapezoid artificial reef.Measurements in particle image velocimetry were conducted to observe the formation of upwellin...Flume experiments and numerical simulation were conducted to characterize the hydrodynamics of a trapezoid artificial reef.Measurements in particle image velocimetry were conducted to observe the formation of upwelling and vortices;and forces for the reef model were measured by load cell.The results of flume experiments agree well with the numerical data.In addition,the flow structure around a reef combining trapezoidal and cubic blocks was simulated numerically under two deployment schemes,showing a more complicated flow structure than that of a stand-alone reef.Relationship between drag coefficient and Reynolds number suggest that the degree of turbulence can be assessed from the value of drag coefficient downstream from the reef.The role of the reef in water flow is to reduce flow velocity and generate turbulence.展开更多
The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realis...The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realistically simulate propulsor working conditions, and the thrust, torque, and lateral force coefficients of both propulsors were compared and analyzed. Forces acting on different parts of the propulsors along with the flow field distribution of steady and unsteady results at different advance coefficients were compared. Moreover, the change of the lateral force and the difference between the abovementioned two methods were mainly analyzed. It was shown that the thrust and torque results of both methods were similar, with the lateral force results having the highest deviation展开更多
The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The moti...The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The motions of the floating breakwater are assumed to be two-dimensional in sway, heave, and roll. The solution to the fluid motion is derived by transforming the governing differential equation into the integral equation on the boundary in time domain with the Green's function method. The motion equations of the floating breakwater are established and solved with the fourth-order Runge-Kutta method to obtain the displacement and velocity of the breakwater. The mooring forces are computed with the static method. The computational results of the wave transmission coefficient, the motion responses, and the mooring forces of the pontoon-plate floating breakwater are given. It is indicated that the relative width of the pontoon is an important factor influencing the wave transmission coefficient of the floating breakwater. The transmission coefficient decreases obviously as the relative width of the pontoon increases. The horizontal plates help to reduce the wave transmission over the floating breakwater. The motion responses and the mooring forces of the pontoon-plate floating breakwater are less than those of the pontoon floating breakwater. The mooring force at the offshore side is larger than that at the onshore side.展开更多
Dynamic wetting plays an important role in the physics of multiphase flow, and has a significant influence on many industrial and geotechnical applications. In this work, a modified smoothed particle hydrodynamics (SP...Dynamic wetting plays an important role in the physics of multiphase flow, and has a significant influence on many industrial and geotechnical applications. In this work, a modified smoothed particle hydrodynamics (SPH) model is employed to simulate surface tension, contact angle and dynamic wetting effects at meso-scale. The wetting and dewetting phenomena are simulated in a capillary tube, where the liquid particles are raised or withdrawn by a shifting substrate. The SPH model is modified by introducing a newly developed viscous force formulation at the liquid-solid interface to reproduce the rate-dependent behaviour of the moving contact line. Dynamic contact angle simulations with the interfacial viscous force are conducted to verify the effectiveness and accuracy of this new formulation. In addition, the influence of interfacial viscous forces with different magnitude on the contact angle dynamics is examined by empirical power-law correlations;the derived constants suggest that the dynamic contact angle changes monotonically with the interfacial viscous force. The simulation results are consistent with experimental observations and theoretical predictions, implying that the interfacial viscous force can be associated with the slip length of flow and the microscopic surface roughness. This work demonstrates that the modified SPH model can successfully account for the rate-dependent effects of a moving contact line, and can be used for realistic multiphase flow simulations under dynamic conditions.展开更多
-The hydrodynamic coefficients for each of two piles and three piles in both side-by-side arrangement and tandem arrangement under the action of irregular waves are experimentally investigated. These coefficients vary...-The hydrodynamic coefficients for each of two piles and three piles in both side-by-side arrangement and tandem arrangement under the action of irregular waves are experimentally investigated. These coefficients vary with the KC number, the relative pile spacing, the number of piles and the pile location, and their relationships are presented in this paper. They can be used in Morison Equation and other equations to calculate directly the in-line wave forces and the transverse forces on each pile in array.展开更多
This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations(RANSE) for incompressible, steady flows. The rotating coordina...This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations(RANSE) for incompressible, steady flows. The rotating coordinate system was adopted to deal with the rotation problem. The Coriolis force and centrifugal force due to the computation in a bodyfixed rotating frame of reference were treated explicitly and added to momentum equations as source terms. Furthermore, velocities of entrances were coded to give the correct magnitude and direction needed. Two turbulence closure models(TCMs), the RNG k-ε model with wall functions and curvature correction and the Shear Stress Transport(SST) k-ω model without the use of wall functions, but with curvature correction and low-Re correction were introduced, respectively. Take DARPA SUBOFF model as the test case, a series of drift angle varying between 0° and 16° at a Reynolds number of 6.53×10^6 undergoing rotating arm test simulations were conducted. The computed forces and moment as a function of drift angle during the steady turn are mostly in close agreement with available experimental data. Though the difference between the pressure coefficients around the hull form was observed, they always show the same trend. It was demonstrated that using sufficiently fine grids and advanced turbulence models will lead to accurate prediction of the flow field as well as the forces and moments on the hull.展开更多
Based on the three-dimensional Reynolds-averaged Navier-Stokes equation with the closure of renormalization group k-εturbulence model and volume of fluid method,a wave-breakwater interaction numerical flume was devel...Based on the three-dimensional Reynolds-averaged Navier-Stokes equation with the closure of renormalization group k-εturbulence model and volume of fluid method,a wave-breakwater interaction numerical flume was developed to examine the wave-structure interaction of the porous I-type composite(PITC)breakwater.The transmission and reflection coefficients of the breakwater at different wave steepness H/L are quantitatively analyzed,and the wave-dissipating performance of the breakwater is compared.By changing the submerged depth of the breakwater,the velocity field,and vorticity field in the wave propagation process are analyzed,and the optimal working water depth of the new breakwater is explored.The results show that the vertical wave force on the PITC breakwater is greater than the horizontal wave force.In addition,during the wave dissipation process,the transverse baffle provided by the new breakwater destroys the trajectory of the water particle.In the interior of the wave-breaking chamber,the water that enters from the gap of the permeable plate mixes with the water entering through the bottom hole.The turbulence created by this process further dissipates the wave energy.The relative submergence depth of h/d has a great influence on the hydrodynamic characteristics.When the relative depth is large,most of the wave energy enters the breakwater,the wave energy dissipation of the breakwater is large,and the wave-absorbing effect is good.These research results provide important referential data for the study of permeable plate breakwaters.展开更多
In this work,Saudi heavy crude oil(SHCO)was upgraded by the hydrodynamic cavitation technique.The collapse of cavitation bubbles instantly produces extreme conditions such as high temperature,pressure,and jet flow and...In this work,Saudi heavy crude oil(SHCO)was upgraded by the hydrodynamic cavitation technique.The collapse of cavitation bubbles instantly produces extreme conditions such as high temperature,pressure,and jet flow and strong shear forces,which can play a significant role in the upgradation process.The results revealed that the viscosity and Conradson carbon residue of SHCO decreased from 13.61 to 7.22 mm^(2)/s and from 7.16%to 6.48%,respectively.True boiling point distillation findings showed that the vacuum residue(VR)decreased by 1%.Atmospheric-pressure photoionization Fourier-transform ion cyclotron resonance mass spectrometry,X-ray diffraction,dynamic light scattering,Fourier-transform infrared spectroscopy,and scanning electron microscopy were employed to characterize the molecular composition,crystalline structure,asphaltene aggregate particle size distribution,functional groups,and morphology,respectively,to understand the effects of hydrodynamic cavitation on asphaltenes.The obtained results demonstrate that hydrodynamic cavitation upgradation reduced the interaction forces between the asphaltene molecules,weakening the crystalline structure of the asphaltene aggregates,reducing the degree of association of the aromatic compounds in SHCO and asphaltenes,and decreasing the average particle size.The delayed coking properties of the VR were further investigated,and the cavitation treatment was found to decrease the coke yield by 1.85%and increase the liquid and gas yields by 1.52%and 0.33%,respectively.Hence,hydrodynamic cavitation can effectively enhance the processing performance of crude oil by improving the properties and structural characteristics of asphaltenes.展开更多
The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid–st...The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid–structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier–Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.展开更多
基金supported by the National High Technology Research and Development Programof China(863 Program,Grant No.2006AA09A105)
文摘Stability design of submarine pipelines is a very important procedure in submarine pipeline engineering design. The calculation of hydrodynamic forces caused by waves and currents acting on marine pipelines is an essential step in pipeline design for stability. The hydrodynamic forces-induced instabilities of submarine pipelines should be regarded as a wave/ current-pipeline-seabed interaction problem. This paper presents a review on hydrodynamic forces and stability research of submarine pipelines under waves and currents. The representative progress including the improved design method and guideline has been made for the marine pipelines engineering design through experimental investigations, numerical simu- lations and analytical models. Finally, further studies on this issue are suggested.
文摘Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, elastic, geometric characteristics and hydraulic parameters. The purpose of this work is to investigate the dynamic behavior of control valves in the response to self-excited fluid flow. An analytical and numerical method is developed to simulate the dynamic and vibrational behavior of sliding dam valves, in response to flow excitation. In order to demonstrate the effectiveness of proposed model, the simulation results are validated with experimental ones. Finally, to achieve the optimal valve geometry, numerical results for various shapes of valves are compared. Rounded valve with the least amount of flow turbulence obtains lower fluctuations and vibration amplitude compared with the flat and steep valves. Simulation results demonstrate that with the optimal design requirements of valves, vibration amplitude can be reduced by an average to 30%.
文摘In order to evaluate the ship’s maneuverability at the initial stage of ship design,this paper introduces a method of calculation of the nonlinear forces which depend on the local form of the hull.The calculation results of the ship “ESSO OSAKA” are presented.
文摘-The hydrodynamic forces on a smooth inclined circular cylinder exposed to oscillating flow were experimentally investigated at Reynolds number (Re) in the range 40000-200000 and Keulegan-Capenter number (KC) in the interval from 5-40. In the test, Re number and KC number were varied systematically. The inertia force coefficient (Cu) and the drag force coefficient (CD) in Morison equation were determined from the measured loads and the water particle kinematics. In this analysis a modified form of Morison equation was used since it uses the normal velocity and acceleration. Thus, the applicability of the Cross Flow Principle was assumed. This principle, simply stated, is as follows: the force acting in the direction normal to the axis of a cylinder placed at some oblique angle with the direction of flow is expressed in terms of the normal component of flow only, and the axial component is disregarded. Both the total in-line force coefficient (CF) and transverse force (lift) coefficient (Cf) were analyzed in terms of their maximum and root mean square values. All the in-line and lift force coefficients were given as a functions of Re and KC number. F'rom this research, it can be seen that the Cross-Flow Principle does not always work well. It seems valid for the total in- line force at high Re and large KC numbers. The Cu for a = 45 is larger and the CD for a = 45 is smaller than that for a = 90 ?and Re> 80000. The hydrodynamic force coefficients CD and Cu for the inclined cylinder are only the functions of the oblique angle (a) and KC number, but not of the Re number.
基金supported jointly by the National Natural Science Foundation of China and Korea Scienceand Engineering Foundation(Grant No.50811140341)
文摘A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model tests are carried out to consider the effects of exciting wave directions and types. Based on the experimental results, two hydrodynamic force models derived from Morisen equation and Wake model are presented respectively. By use of hydrodynamic force models suitable for free spanning submarine pipelines under earthquakes, diseretized equations of motion are obtained and finite element models are established to analyze dynamic response of free spanning submarine pipeline subjected to multi-support seismic excitations. The comparison of numerical results with experimental results shows that the improved Morison and Wake hydrodynamic force models could satisfactorily predict dynamic response on the free spanning submarine pipelines subjected to earthquakes.
基金financially supported by the SINTEF Fisheries and Aquaculture of Norway and the National Natural Science Foundation of China(Grant No.51490674)
文摘In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three nondimensional parameters(Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients.The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.
基金supported by the National Major Research Program for Science and Technology of China (Grant No. 2011ZX05009-02)National Natural Science Foundation of China (No. 41102089)
文摘Petroleum is produced from a beach-bar sand reservoir in the upper subsection of the 4th member of the Paleogene Shahejie Formation (Es4s) in the eastern Dongying Depression,penetrated by many wells in the Guangli-Qingnan area and this subsection still has further exploration potential.Using drilling and logging data,we analyzed the sand body types,emphasizing the sedimentary characteristics of the beach-bar sand bodies.Combining these data with the concepts of lacustrine and oceanic hydrodynamics,we explain the formation and distribution of the beach-bar sands in the eastern Dongying Depression.The connectivity between beach-bar sand bodies within each individual hydrodynamic zone is better than that between sand bodies in any two adjacent zones.The tempestite sand bodies developed in this area are characterized by typical storm deposits and are located at the bottoms of the beachbar sand bodies.They grade upward to normal shore and shallow-lacustrine beaches and bars.We also propose a new simple method to estimate the paleo-water depth using the thicknesses of the bar sand bodies in parasequences combined with the principle of hydrodynamic zonation.Based on the distribution of the beach-bar sands in parasequence set 3,we infer that the paleo-wind direction was from the north with an average paleo-wind force of 6 when the major beach-bar sand bodies formed.
基金Supported by the National High Technology Research and Development Program of China(863 Programs)(No.2006AA100301)Science and Technology Development Program of Shandong Province(No.2005GG3205102)
文摘The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG κ-ε turbulent model. The numerical simulation results are consistent with results observed by experimental means. A comparative study indicates that the corresponding errors of forces between calculated values and values observed in the experiment vary in the range of2.3%-11.2% and that the corresponding errors of velocities vary in the range of 1.3%-15.8%. The flow field numerical results show that upstream and vortices exist when the current passes over and through the surface of the reef model. This study suggests that the numerical simulation method can be applied to predict the forces and flow field associated with artificial reefs.
基金Supported by the National Natural Science Foundation of China(Nos.31072246,31272703)
文摘This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation and vortex evolution,and compare the force terms generated by our artificial reef model.The numerical simulation agrees well with experimental results,showing the applicability of computational fluid dynamics to the hydrodynamics of an artificial reef.Furthermore,we numerically simulate the hydrodynamics of the reef model for seven velocities.The results show that the drag coefficient is approximately 1.21 in a self-modeling region for Reynolds numbers between 2.123×104and 9×104.Therefore,the upwelling height and current width of the flow field do not change significantly when the inflow velocity increases.Our study indicates that computational fluid dynamics can be applied to study the hydrodynamics of an artificial reef and offer clues to its construction.
基金National Natural Science Foundation of China(No.59779005)
文摘The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or in irregular waves, in pure waves or in wave-current coexisting field. In this paper, the normalization of hydrodynamic coefficients for various environmental conditions is discussed. When a proper definition of KC number and proper characteristic values of irregular waves are used, a unified relationship between C-d, C-m and KC number for regular waves, irregular waves, pure waves and wave-current coexisting field can be obtained.
基金Supported by the National Natural Science Foundation of China(Nos.31072246,31272703)
文摘Flume experiments and numerical simulation were conducted to characterize the hydrodynamics of a trapezoid artificial reef.Measurements in particle image velocimetry were conducted to observe the formation of upwelling and vortices;and forces for the reef model were measured by load cell.The results of flume experiments agree well with the numerical data.In addition,the flow structure around a reef combining trapezoidal and cubic blocks was simulated numerically under two deployment schemes,showing a more complicated flow structure than that of a stand-alone reef.Relationship between drag coefficient and Reynolds number suggest that the degree of turbulence can be assessed from the value of drag coefficient downstream from the reef.The role of the reef in water flow is to reduce flow velocity and generate turbulence.
基金Supported by National Natural Science Foundation of China (41176074, 51209048,51379043,51409063) High tech ship research project of Ministry of industry and technology (G014613002) The support plan for youth backbone teachers of Harbin Engineering University (HEUCFQ1408)
文摘The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realistically simulate propulsor working conditions, and the thrust, torque, and lateral force coefficients of both propulsors were compared and analyzed. Forces acting on different parts of the propulsors along with the flow field distribution of steady and unsteady results at different advance coefficients were compared. Moreover, the change of the lateral force and the difference between the abovementioned two methods were mainly analyzed. It was shown that the thrust and torque results of both methods were similar, with the lateral force results having the highest deviation
基金supported by the National Natural Science Foundation of China (Grant No. 51009032)the Scientific Research Foundation of Third Institute of Oceanography, SOA (Grant No. 201003)the Open Research Fund Program of Hunan Province Key Laboratory of Water, Sediment Science & Flood Hazard Prevention (Grant No. 2010SS03)
文摘The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The motions of the floating breakwater are assumed to be two-dimensional in sway, heave, and roll. The solution to the fluid motion is derived by transforming the governing differential equation into the integral equation on the boundary in time domain with the Green's function method. The motion equations of the floating breakwater are established and solved with the fourth-order Runge-Kutta method to obtain the displacement and velocity of the breakwater. The mooring forces are computed with the static method. The computational results of the wave transmission coefficient, the motion responses, and the mooring forces of the pontoon-plate floating breakwater are given. It is indicated that the relative width of the pontoon is an important factor influencing the wave transmission coefficient of the floating breakwater. The transmission coefficient decreases obviously as the relative width of the pontoon increases. The horizontal plates help to reduce the wave transmission over the floating breakwater. The motion responses and the mooring forces of the pontoon-plate floating breakwater are less than those of the pontoon floating breakwater. The mooring force at the offshore side is larger than that at the onshore side.
文摘Dynamic wetting plays an important role in the physics of multiphase flow, and has a significant influence on many industrial and geotechnical applications. In this work, a modified smoothed particle hydrodynamics (SPH) model is employed to simulate surface tension, contact angle and dynamic wetting effects at meso-scale. The wetting and dewetting phenomena are simulated in a capillary tube, where the liquid particles are raised or withdrawn by a shifting substrate. The SPH model is modified by introducing a newly developed viscous force formulation at the liquid-solid interface to reproduce the rate-dependent behaviour of the moving contact line. Dynamic contact angle simulations with the interfacial viscous force are conducted to verify the effectiveness and accuracy of this new formulation. In addition, the influence of interfacial viscous forces with different magnitude on the contact angle dynamics is examined by empirical power-law correlations;the derived constants suggest that the dynamic contact angle changes monotonically with the interfacial viscous force. The simulation results are consistent with experimental observations and theoretical predictions, implying that the interfacial viscous force can be associated with the slip length of flow and the microscopic surface roughness. This work demonstrates that the modified SPH model can successfully account for the rate-dependent effects of a moving contact line, and can be used for realistic multiphase flow simulations under dynamic conditions.
文摘-The hydrodynamic coefficients for each of two piles and three piles in both side-by-side arrangement and tandem arrangement under the action of irregular waves are experimentally investigated. These coefficients vary with the KC number, the relative pile spacing, the number of piles and the pile location, and their relationships are presented in this paper. They can be used in Morison Equation and other equations to calculate directly the in-line wave forces and the transverse forces on each pile in array.
基金financially supported by the National Natural Science Foundation of China(Grant No.51179199)
文摘This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations(RANSE) for incompressible, steady flows. The rotating coordinate system was adopted to deal with the rotation problem. The Coriolis force and centrifugal force due to the computation in a bodyfixed rotating frame of reference were treated explicitly and added to momentum equations as source terms. Furthermore, velocities of entrances were coded to give the correct magnitude and direction needed. Two turbulence closure models(TCMs), the RNG k-ε model with wall functions and curvature correction and the Shear Stress Transport(SST) k-ω model without the use of wall functions, but with curvature correction and low-Re correction were introduced, respectively. Take DARPA SUBOFF model as the test case, a series of drift angle varying between 0° and 16° at a Reynolds number of 6.53×10^6 undergoing rotating arm test simulations were conducted. The computed forces and moment as a function of drift angle during the steady turn are mostly in close agreement with available experimental data. Though the difference between the pressure coefficients around the hull form was observed, they always show the same trend. It was demonstrated that using sufficiently fine grids and advanced turbulence models will lead to accurate prediction of the flow field as well as the forces and moments on the hull.
基金Supported by the National Natural Science Foundation of China under Grants Nos.51679015 and 52071031。
文摘Based on the three-dimensional Reynolds-averaged Navier-Stokes equation with the closure of renormalization group k-εturbulence model and volume of fluid method,a wave-breakwater interaction numerical flume was developed to examine the wave-structure interaction of the porous I-type composite(PITC)breakwater.The transmission and reflection coefficients of the breakwater at different wave steepness H/L are quantitatively analyzed,and the wave-dissipating performance of the breakwater is compared.By changing the submerged depth of the breakwater,the velocity field,and vorticity field in the wave propagation process are analyzed,and the optimal working water depth of the new breakwater is explored.The results show that the vertical wave force on the PITC breakwater is greater than the horizontal wave force.In addition,during the wave dissipation process,the transverse baffle provided by the new breakwater destroys the trajectory of the water particle.In the interior of the wave-breaking chamber,the water that enters from the gap of the permeable plate mixes with the water entering through the bottom hole.The turbulence created by this process further dissipates the wave energy.The relative submergence depth of h/d has a great influence on the hydrodynamic characteristics.When the relative depth is large,most of the wave energy enters the breakwater,the wave energy dissipation of the breakwater is large,and the wave-absorbing effect is good.These research results provide important referential data for the study of permeable plate breakwaters.
基金This work was financially supported by the Research Program of China Petrochemical Corporation(SINOPEC 117017-8 and 119022-2).
文摘In this work,Saudi heavy crude oil(SHCO)was upgraded by the hydrodynamic cavitation technique.The collapse of cavitation bubbles instantly produces extreme conditions such as high temperature,pressure,and jet flow and strong shear forces,which can play a significant role in the upgradation process.The results revealed that the viscosity and Conradson carbon residue of SHCO decreased from 13.61 to 7.22 mm^(2)/s and from 7.16%to 6.48%,respectively.True boiling point distillation findings showed that the vacuum residue(VR)decreased by 1%.Atmospheric-pressure photoionization Fourier-transform ion cyclotron resonance mass spectrometry,X-ray diffraction,dynamic light scattering,Fourier-transform infrared spectroscopy,and scanning electron microscopy were employed to characterize the molecular composition,crystalline structure,asphaltene aggregate particle size distribution,functional groups,and morphology,respectively,to understand the effects of hydrodynamic cavitation on asphaltenes.The obtained results demonstrate that hydrodynamic cavitation upgradation reduced the interaction forces between the asphaltene molecules,weakening the crystalline structure of the asphaltene aggregates,reducing the degree of association of the aromatic compounds in SHCO and asphaltenes,and decreasing the average particle size.The delayed coking properties of the VR were further investigated,and the cavitation treatment was found to decrease the coke yield by 1.85%and increase the liquid and gas yields by 1.52%and 0.33%,respectively.Hence,hydrodynamic cavitation can effectively enhance the processing performance of crude oil by improving the properties and structural characteristics of asphaltenes.
基金financially supported by the National Natural Science Foundation of China(Grant No.51179030)
文摘The perforated caisson is widely applied to practical engineering because of its great advantages in effectively wave energy consumption and cost reduction. The attentions of many scientists were paid to the fluid–structure interaction between wave and perforated caisson studies, but until now, most concerns have been put on theoretical analysis and experimental model set up. In this paper, interaction between the wave and the partial perforated caisson in a 2D numerical wave flume is investigated by means of the renewed SPH algorithm, and the mathematical equations are in the form of SPH numerical approximation based on Navier–Stokes equations. The validity of the SPH mathematical method is examined and the simulated results are compared with the results of theoretical models, meanwhile the complex hydrodynamic characteristics when the water particles flow in or out of a wave absorbing chamber are analyzed and the wave pressure distribution of the perforated caisson is also addressed here. The relationship between the ratio of total horizontal force acting on caisson under regular waves and its influence factors is examined. The data show that the numerical calculation of the ratio of total horizontal force meets the empirical regression equation very well. The simulations of SPH about the wave nonlinearity and breaking are briefly depicted in the paper, suggesting that the advantages and great potentiality of the SPH method is significant compared with traditional methods.