期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Clarification of abrasive jet precision finishing with wheel as restraint mechanisms and experimental verification
1
作者 李长河 侯亚丽 蔡光起 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第5期718-721,共4页
According to the critical size ratio for the characteristic particle size to film thickness between grinding wheel and work, the machining mechanisms in abrasive jet precision finishing with grinding wheel as restrain... According to the critical size ratio for the characteristic particle size to film thickness between grinding wheel and work, the machining mechanisms in abrasive jet precision finishing with grinding wheel as restraint can be categorized into four states, namely, two-body lapping, three-body polishing, abrasive jet machining and fluid hydrodynamic shear stress machining. The critical transition condition of two-body lapping to three-body polishing was analyzed. The single abrasive material removal models of two-body lapping, three-body polishing, abrasive jet finishing and fluid hydrodynamic shear stress machining were proposed. Experiments were performed in the refited plane grinding machine for theoretical modes verification. It was found that experimental results agreed with academic modes and the modes validity was verified. 展开更多
关键词 Grinding wheel as restraint precision finishing mechanisms two-body lapping three-body polishing abrasive jet machining fluid hydrodynamic shear stress machining
下载PDF
Electropolishing of titanium alloy under hydrodynamic mode 被引量:3
2
作者 Pei Huang Junhui Lai +6 位作者 Lianhuan Han Fang-Zu Yang Li-Min Jiang Jian-Jia Su Zhao-Wu Tian Zhong-Qun Tian Dongping Zhan 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第11期1525-1528,共4页
Titanium(Ti) alloys are widely used in aerospace industry due to the low density and high corrosion resistance. However, machining and polishing remain great challenges because of the hardness and chemical stability. ... Titanium(Ti) alloys are widely used in aerospace industry due to the low density and high corrosion resistance. However, machining and polishing remain great challenges because of the hardness and chemical stability. With a home-made electrochemical machining workstation, cyclic voltammetry is performed at a wide potential range of [0 V, 20 V] to record the details of passivation and depassivation processes under a hydrodynamic mode. The results show that the thickness of viscous layer formed on the alloy surface plays a crucial effect on the electropolishing quality. The technical parameters, including the mechanical motion rate, polishing time and electrode gap, are optimized to achieve a surface roughness less than 1.9 nm, which shows a prospective application in the electrochemical machining of Ti and it alloys. 展开更多
关键词 electrochemical machining electropolishing titanium alloy hydrodynamic viscous layer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部