期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap 被引量:10
1
作者 Iliya D.Stoev Benjamin Seelbinder +2 位作者 Elena Erben Nicola Maghelli Moritz Kreysing 《eLight》 2021年第1期69-77,共9页
The use of optical tweezers to measure forces acting upon microscopic particles has revolutionised fields from material science to cell biology.However,despite optical control capabilities,this technology is highly co... The use of optical tweezers to measure forces acting upon microscopic particles has revolutionised fields from material science to cell biology.However,despite optical control capabilities,this technology is highly constrained by the material properties of the probe,and its use may be limited due to concerns about the effect on biological processes.Here we present a novel,optically controlled trapping method based on light-induced hydrodynamic flows.Specifically,we leverage optical control capabilities to convert a translationally invariant topological defect of a flow field into an attractor for colloids in an effectively one-dimensional harmonic,yet freely rotatable system.Circumventing the need to stabilise particle dynamics along an unstable axis,this novel trap closely resembles the isotropic dynamics of optical tweezers.Using magnetic beads,we explicitly show the existence of a linear force-extension relationship that can be used to detect femtoNewton-range forces with sensitivity close to the thermal limit.Our force measurements remove the need for laser-particle contact,while also lifting material constraints,which renders them a particu-larly interesting tool for the life sciences and engineering. 展开更多
关键词 Force measurements OPTOFLUIDICS hydrodynamic trap Thermoviscous flows
原文传递
A portable single-cell analysis system integrating hydrodynamic trapping with broadband impedance spectroscopy
2
作者 TANG WenLai TANG DeZhi +2 位作者 NI ZhongHua XIANG Nan YI Hong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第11期1707-1715,共9页
In this paper, we present a portable single-cell analysis system with the hydrodynamic cell trapping and the broadband electrical impedance spectroscopy (EIS). Using the least flow resistance path principle, the hyd... In this paper, we present a portable single-cell analysis system with the hydrodynamic cell trapping and the broadband electrical impedance spectroscopy (EIS). Using the least flow resistance path principle, the hydrodynamic cell trapping in serpentine arrays can be carried out in a deterministic and automatic manner without the assistance of any external fields. The experimental results show that a cell trap rate of higher than 95% can be easily achieved in our ceil trapping microdevices. Using the maximum length sequences (MLS) technique, our home-made EIS is capable of measuring the impedance spectrum ranging from 1.953 kHz to 1 MHz in approximately 0.5 ms. Finally, on the basis of the developed single-cell analysis system, we precisely monitor the trapping process of human breast tumor cells (MCF-7 cells) according to the changes of electrical impedance. The MCF-7 cells with different trapping conditions or sizes can also be clearly distinguished through the impedance signals. Our portable single-cell analysis system may provide a promising tool to monitor single cells for long periods of time or to discriminate cell types. 展开更多
关键词 single-cell analysis hydrodynamic cell trapping broadband impedance spectroscopy maximum length sequences
原文传递
Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier 被引量:2
3
作者 Miao Yu Zongzheng Chen +3 位作者 Cheng Xiang Bo Liu Handi Xie Kairong Qin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期422-429,共8页
Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based ... Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier.The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system.It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments. 展开更多
关键词 Single cell trapping Microfluidics Stagnation point flow Physical barrier hydrodynamic tweezers Dynamic biochemical signal
下载PDF
Enhanced single-nanoparticle collisions for the hydrogen evolution reaction in a confined microchannel
4
作者 Si-Min Lu Mengjie Chen +3 位作者 Huilin Wen Hao-Wei Wang Ziyi Yu Yi-Tao Long 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第11期2815-2819,共5页
Single nanoparticle(NP)collisions technique has been widely employed in electrocatalysis.However,the short collision duration of single NPs hinders the further improvement in their electrocatalytic performance.Here,to... Single nanoparticle(NP)collisions technique has been widely employed in electrocatalysis.However,the short collision duration of single NPs hinders the further improvement in their electrocatalytic performance.Here,to increase the dynamic collision duration of single NPs in the electron tunneling region,enhanced near-wall hindered diffusion is introduced in the stochastic collision process by coupling a Au ultramicroelectrode(UME)with a confined microchannel.In the case of single palladium nanoparticle(Pd NP)collisions for the hydrogen evolution reaction(HER),the hydrodynamic trapping confined in the microchannel effectively permits the activation of the HER on the single Pd NPs.The microchannel-based Au UME is promising in the application of single-NP collisions to energy conversion. 展开更多
关键词 Single-nanoparticle collisions Confined microchannel hydrodynamic trapping Collision duration Hydrogen evolution reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部