With the development of ships towards large scale, high speed and light weight, ship hydroelastic responses and slamming strength issues are becoming increasingly important. In this paper, a time-domain nonlinear hydr...With the development of ships towards large scale, high speed and light weight, ship hydroelastic responses and slamming strength issues are becoming increasingly important. In this paper, a time-domain nonlinear hydroelasticity theory is developed to predict ship motion and load responses in harsh regular waves.Hydrostatic restoring force, wave excitation force and radiation force are calculated on the instantaneously wetted body surface to consider the nonlinear effects caused by large amplitude motions of ship in steep waves. A twodimensional(2 D) generalized Wagner model and a one-dimensional(1 D) dam-breaking model are used to estimate the impact loads caused by bow flare slamming and green water on deck, respectively;the impact loads are coupled with the hydroelastic equation in time-domain. Moreover, segmented model tests are carried out in a towing tank to investigate the wave and slamming loads acting on the hull sailing in harsh regular head waves and also validate the numerical results.展开更多
A mooring system has been designed for the position keeping of a two-module semi-submersible platform which is connected by hinge-type connectors.Under the excitation of ocean waves,the relative motion between the two...A mooring system has been designed for the position keeping of a two-module semi-submersible platform which is connected by hinge-type connectors.Under the excitation of ocean waves,the relative motion between the two modules can be significant.It is therefore no longer adequate to model the platform as a single rigid body in the analysis of the performance of the mooring system.In this study,an analysis method has been developed based on the three-dimensional frequency domain hydroelasticity theory in conjunction with the time domain quasi-static analysis method of mooring actions,which takes into account of the coupling effect of the platform motion and mooring tension.The proposed method is verified by comparing the numerical results with the measured data obtained from the on-site measurements.The comparison shows a good agreement,and demonstrates the feasibility and effectiveness of the proposed method for the analysis of the module responses and mooring tensions of multi-module floating platforms.展开更多
基金the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province(No.2017KQNCX004)the Natural Science Foundation of Guangdong Province(No.2018A030310378)
文摘With the development of ships towards large scale, high speed and light weight, ship hydroelastic responses and slamming strength issues are becoming increasingly important. In this paper, a time-domain nonlinear hydroelasticity theory is developed to predict ship motion and load responses in harsh regular waves.Hydrostatic restoring force, wave excitation force and radiation force are calculated on the instantaneously wetted body surface to consider the nonlinear effects caused by large amplitude motions of ship in steep waves. A twodimensional(2 D) generalized Wagner model and a one-dimensional(1 D) dam-breaking model are used to estimate the impact loads caused by bow flare slamming and green water on deck, respectively;the impact loads are coupled with the hydroelastic equation in time-domain. Moreover, segmented model tests are carried out in a towing tank to investigate the wave and slamming loads acting on the hull sailing in harsh regular head waves and also validate the numerical results.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFB0202701)the Ministryof Industry and Information Technology(Grant Nos.[2016J22,[2019J357)+2 种基金supported by the State Key Fundamental Research Program(Grant No.2013CB036100)the Jiangsu Province Science Foundation for Youths(Grant No.BK20190151)the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)(Grant No.ZJW-2019-02).
文摘A mooring system has been designed for the position keeping of a two-module semi-submersible platform which is connected by hinge-type connectors.Under the excitation of ocean waves,the relative motion between the two modules can be significant.It is therefore no longer adequate to model the platform as a single rigid body in the analysis of the performance of the mooring system.In this study,an analysis method has been developed based on the three-dimensional frequency domain hydroelasticity theory in conjunction with the time domain quasi-static analysis method of mooring actions,which takes into account of the coupling effect of the platform motion and mooring tension.The proposed method is verified by comparing the numerical results with the measured data obtained from the on-site measurements.The comparison shows a good agreement,and demonstrates the feasibility and effectiveness of the proposed method for the analysis of the module responses and mooring tensions of multi-module floating platforms.