期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fluid-structure interaction simulation of three-dimensional flexible hydrofoil in water tunnel 被引量:6
1
作者 Shiliang HU Chuanjing LU Yousheng HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第1期15-26,共12页
The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional can... The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional cantilevered hydrofoil in the water tunnel. The FVM solver and the coupled approach are verified and validated by compar- ing the numerical predictions with the experimental measurements, and good agreement is obtained concerning both the lift on the foil and the tip displacement. In the noncav- itating flow, the result indicates that the growth of the initial incidence angle and the Reynolds number improves the deformation of the foil, and the lift on the foil is increased by the twist deformation. The normalized twist angle and displacement along the span of the hydrofoil for different incidence angles and Reynolds numbers are almost uniform. For the cavitation flow, it is shown that the small amplitude vibration of the foil has limited influence on the developing process of the partial cavity, and the quasi two-dimensional cavity shedding does not change the deformation mode of the hydrofoil. However, the frequency spectrum of the lift on the foil contains the frequency which is associated with the first bend frequency of the hydrofoil. 展开更多
关键词 closely coupled approach fluid-structure interaction (FSI) hydrofoil cavitation
下载PDF
Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model 被引量:2
2
作者 张德胜 王海宇 +2 位作者 施卫东 张光建 Van ESCH B.P.M.(Bart) 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第5期795-808,共14页
The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy... The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow. 展开更多
关键词 filter-based model(FBM) density correction method cloud cavitation hydrofoil unsteady behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部