High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal ki...High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced.展开更多
Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray...Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive spectrometer(EDS), high resolution transmission electron microscope(HRTEM) and hydrogen absorption/desorption measurements. XRD analysis results showed that Mg_2Ni and Mg phases were detected in the XRD pattern of the Mg_(23)Ni_(10) alloy, however, the La addition results in conversion from Mg to LaMg_3 and La_2Mg_(17) phases and appearance of crystal defects included dislocations, twin grain boundary and vacancy in the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloy textures. The total maximum hydrogen absorption capacity was 4.45 wt% for the Mg_(23)Ni_(10) alloy, however, the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys with vacancy, dislocations and twin grain boundary, absorbed 3.66 wt% and 3.60 wt%, respectively, indicating that the La addition led to decreasing of the maximum hydrogen absorption capacity. Besides, hydrogen absorption/desorption of 90% of saturated state expended for about 456 and 990 s for pristine Mg_(23)Ni_(10) alloy, by contrast, the time decreased owing to improvement of hydrogen absorption and desorption kinetics in the alloy with La element, with which the uptake time for hydrogen content to 90% of saturated state was 150 and 78 s, and 90% hydrogen can be released in 930 and 804 s for Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys in the experimental condition.展开更多
Hydrogen absorption and desorption characteristics for high coercivity NdDyFeCoNbCuB sintered bulk magnets were studied, by differential scanning calorimetry (DSC) measurement and hydrogenation kinetics measurement....Hydrogen absorption and desorption characteristics for high coercivity NdDyFeCoNbCuB sintered bulk magnets were studied, by differential scanning calorimetry (DSC) measurement and hydrogenation kinetics measurement. The DSC measurements showed that hydrogenation of Nd-rich phase occurred in the temperature range of 40-185 ℃, hydrogenation of the tetragonal (Ф) phase in the temperature range of 185-220 ℃, as well as the disproportionation of the Ф phase that occurred in a broad temperature range from around 500 to 800 ℃. The hydrogenation kinetics measurements indicated that hydrogen absorption of the bulk magnets at 50 ℃ absorbed more hydrogen than at 150 ℃, although this procedure was slower at 50 ℃ than at 150℃. This phenomenon was discussed by means of pressure-concentration-temperature (p-c-T) diagrams.展开更多
In this work,the microstructure,hydrogen storage properties,anti-oxide ability and rate limiting step of Zr(Cr_(1−x)Co_(x))_(2)(x=0,0.2,0.4 and 0.6)alloys have been investigated.After studying the crystal structure,we...In this work,the microstructure,hydrogen storage properties,anti-oxide ability and rate limiting step of Zr(Cr_(1−x)Co_(x))_(2)(x=0,0.2,0.4 and 0.6)alloys have been investigated.After studying the crystal structure,we found that all alloy samples could show C14-type phase but the alloy sample x=0 could also show a small amount of Cr phase.Rietveld fitting showed that lattice parameter and unit cell volume of C14-type phase decreased with increasing x.After further research,it was clear that the first hydrogen absorption capacity decreased with increasing x.But introducing more Co content had a positive influence on the effective hydrogen storage capacity and cyclic hydrogen absorption and desorption properties of the alloy sample.We also found that adding Co to ZrCr_(2)alloy could improve its anti-oxide ability.In addition to this,the rate limiting step model was also studied.展开更多
In this paper,it was addressed a hydrogen absorbing and desorbing thermodynamics inα+βtype TC21 titanium alloy with high strength and toughness based on thermodynamic experiments and calculation.The relationship bet...In this paper,it was addressed a hydrogen absorbing and desorbing thermodynamics inα+βtype TC21 titanium alloy with high strength and toughness based on thermodynamic experiments and calculation.The relationship between concentration(C),temperature(T),and pressure(P)of TC21 alloy is shown by P-C-T curves during hydrogen absorption and desorption process,which were measured by multistep hydrogenation/dehydrogenation methods from 625 to 750℃.The P-C-T isotherms at a given temperature were separated into three regions.The partial thermodynamic functions of hydrogen reaction were evaluated by a modified form of Sievert’s law and P-CoTrelation of different regions was expressed by the modified Sievert’s law.The results show that the enthalpy of hydrogen reaction in the first and third region relies on hydrogen content.According to Vant’s Hoff law,enthalpy and entropy of hydrogenation platform in TC21 alloys are-53.58 kJ·mol^(-1)and-127.41 J·K·mol^(-1),respectively.Compared with P-C-T curves of hydrogen absorption,that of hydrogen desorption exists hysteresis.展开更多
Hydrogen plays an important role in the formation of quench cracks of structural steels. To clarify hydrogen ab- sorption and desorption during heat treatment of AISI 4140 steel, thermal desorption spectrometry (TDS...Hydrogen plays an important role in the formation of quench cracks of structural steels. To clarify hydrogen ab- sorption and desorption during heat treatment of AISI 4140 steel, thermal desorption spectrometry (TDS) analysis was carried out for the specimens in the as-rolled, as quenched, and quenched and tempered conditions. Results show that hydrogen content increased from 0. 127 ×10 6 in the as-rolled specimen to 0. 316 × 10-6 in the as-oil-quenched specimen. After tempering at 200 ℃, the hydrogen content in the oil-quenched specimen decreased to 0. 155 × 10-6 , and the peak temperature of hydrogen desorption increased from 200 to 360 ℃. From the dependence of hydrogen content in the as-quenched specimens on austenitizing time, it can be deduced that hydrogen absorption occurs during austenitizing. The simulation of hydrogen absorption contributes to a better understanding on the distribution of hy- drogen during the heat treatment in structural steels.展开更多
Rare earth-based superlattice alloys have great potential for gaseous hydrogen storage,as well as successful application as nickel-metal hydride batteries anodes.In this work,Y substitution was carried out to adjust t...Rare earth-based superlattice alloys have great potential for gaseous hydrogen storage,as well as successful application as nickel-metal hydride batteries anodes.In this work,Y substitution was carried out to adjust the gaseous hydrogen storage properties of A_(2)B_(7)-type La_(0.7)Mg_(0.3)Ni_(3.5)alloys.The results indicate a multiphase structure in the alloys comprised of the main rhombohedral Gd_(2)Co_(7)and PuNi_(3)phases,with a small amount of CaCu_(5)phase.Moreover,the Y substitution results in higher abundance of the Gd_(2)Co_(7)phase.The alloy La_(0.42)Y_(0.28)Mg_(0.3)Ni_(3.5)exhibits a hydrogen storage cap acity of 1.55 wt%at 298 K and a desorption plateau pressure of 0.244 MPa.In addition,this alloy demonstrates a stable cycle life by a capacity retention of 94.2%after 50 cycles,with the main capacity degradation occurring during the initial 20 cycles.This work accentuates the potential of the La-Y-Mg-Ni-based superlattice alloys for applications in solid-state hydrogen storage.展开更多
基金This work was financially supported by the Chongqing Special Key Project of Technology Innovation and Applica-tion Development,China(No.cstc2019jscx-dxwtB0029)the National Natural Science Foundation of China(Nos.51871143 and U2102212)+1 种基金the Science and Technology Committee of Shanghai,China(No.19010500400)the Shanghai Rising-Star Program(No.21QA1403200).
文摘High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced.
基金Founded by the National Natural Science Foundation of China(51371094 and 51161015)the Hebei University Experiment Center Project(sy2015091)
文摘Induction melting was used as a routine method to synthesize Mg_(23)Ni_(10), Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys, and followed by a detailed microstructural characterization which included X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive spectrometer(EDS), high resolution transmission electron microscope(HRTEM) and hydrogen absorption/desorption measurements. XRD analysis results showed that Mg_2Ni and Mg phases were detected in the XRD pattern of the Mg_(23)Ni_(10) alloy, however, the La addition results in conversion from Mg to LaMg_3 and La_2Mg_(17) phases and appearance of crystal defects included dislocations, twin grain boundary and vacancy in the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloy textures. The total maximum hydrogen absorption capacity was 4.45 wt% for the Mg_(23)Ni_(10) alloy, however, the Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys with vacancy, dislocations and twin grain boundary, absorbed 3.66 wt% and 3.60 wt%, respectively, indicating that the La addition led to decreasing of the maximum hydrogen absorption capacity. Besides, hydrogen absorption/desorption of 90% of saturated state expended for about 456 and 990 s for pristine Mg_(23)Ni_(10) alloy, by contrast, the time decreased owing to improvement of hydrogen absorption and desorption kinetics in the alloy with La element, with which the uptake time for hydrogen content to 90% of saturated state was 150 and 78 s, and 90% hydrogen can be released in 930 and 804 s for Mg_(22)LaNi_(10) and Mg_(21)La_2Ni_(10) alloys in the experimental condition.
文摘Hydrogen absorption and desorption characteristics for high coercivity NdDyFeCoNbCuB sintered bulk magnets were studied, by differential scanning calorimetry (DSC) measurement and hydrogenation kinetics measurement. The DSC measurements showed that hydrogenation of Nd-rich phase occurred in the temperature range of 40-185 ℃, hydrogenation of the tetragonal (Ф) phase in the temperature range of 185-220 ℃, as well as the disproportionation of the Ф phase that occurred in a broad temperature range from around 500 to 800 ℃. The hydrogenation kinetics measurements indicated that hydrogen absorption of the bulk magnets at 50 ℃ absorbed more hydrogen than at 150 ℃, although this procedure was slower at 50 ℃ than at 150℃. This phenomenon was discussed by means of pressure-concentration-temperature (p-c-T) diagrams.
基金supported by Natural Science Foundation of Jiangxi Province(20202BABL214003)Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation(JXMS202008 and JXMS202009)+4 种基金Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices(PMND201902)Engineering Research Center of Nuclear Technology Application(East China University of Technology)Ministry of Education(HJSJYB2019–5)Science and Technology Project Founded by Education Department of Jiangxi Province(GJJ190406)Research Foundation for Advanced Talents of East China University of Technology(DHBK2019091).
文摘In this work,the microstructure,hydrogen storage properties,anti-oxide ability and rate limiting step of Zr(Cr_(1−x)Co_(x))_(2)(x=0,0.2,0.4 and 0.6)alloys have been investigated.After studying the crystal structure,we found that all alloy samples could show C14-type phase but the alloy sample x=0 could also show a small amount of Cr phase.Rietveld fitting showed that lattice parameter and unit cell volume of C14-type phase decreased with increasing x.After further research,it was clear that the first hydrogen absorption capacity decreased with increasing x.But introducing more Co content had a positive influence on the effective hydrogen storage capacity and cyclic hydrogen absorption and desorption properties of the alloy sample.We also found that adding Co to ZrCr_(2)alloy could improve its anti-oxide ability.In addition to this,the rate limiting step model was also studied.
基金the Key Program in Xihua University(No.Z1120117)Department of Education Research Fund in China,Sichuan Province(No.12201453)the Open Research Fund of Key Laboratory of Special Materials and Preparation Technology,Xihua University(No.S2jj2012-019)。
文摘In this paper,it was addressed a hydrogen absorbing and desorbing thermodynamics inα+βtype TC21 titanium alloy with high strength and toughness based on thermodynamic experiments and calculation.The relationship between concentration(C),temperature(T),and pressure(P)of TC21 alloy is shown by P-C-T curves during hydrogen absorption and desorption process,which were measured by multistep hydrogenation/dehydrogenation methods from 625 to 750℃.The P-C-T isotherms at a given temperature were separated into three regions.The partial thermodynamic functions of hydrogen reaction were evaluated by a modified form of Sievert’s law and P-CoTrelation of different regions was expressed by the modified Sievert’s law.The results show that the enthalpy of hydrogen reaction in the first and third region relies on hydrogen content.According to Vant’s Hoff law,enthalpy and entropy of hydrogenation platform in TC21 alloys are-53.58 kJ·mol^(-1)and-127.41 J·K·mol^(-1),respectively.Compared with P-C-T curves of hydrogen absorption,that of hydrogen desorption exists hysteresis.
基金Item Sponsored by National Basic Research Program(973 Program)of China(2010CB630800)
文摘Hydrogen plays an important role in the formation of quench cracks of structural steels. To clarify hydrogen ab- sorption and desorption during heat treatment of AISI 4140 steel, thermal desorption spectrometry (TDS) analysis was carried out for the specimens in the as-rolled, as quenched, and quenched and tempered conditions. Results show that hydrogen content increased from 0. 127 ×10 6 in the as-rolled specimen to 0. 316 × 10-6 in the as-oil-quenched specimen. After tempering at 200 ℃, the hydrogen content in the oil-quenched specimen decreased to 0. 155 × 10-6 , and the peak temperature of hydrogen desorption increased from 200 to 360 ℃. From the dependence of hydrogen content in the as-quenched specimens on austenitizing time, it can be deduced that hydrogen absorption occurs during austenitizing. The simulation of hydrogen absorption contributes to a better understanding on the distribution of hy- drogen during the heat treatment in structural steels.
基金Project supported by the National Natural Science Foundation of China(52271214,51831009)。
文摘Rare earth-based superlattice alloys have great potential for gaseous hydrogen storage,as well as successful application as nickel-metal hydride batteries anodes.In this work,Y substitution was carried out to adjust the gaseous hydrogen storage properties of A_(2)B_(7)-type La_(0.7)Mg_(0.3)Ni_(3.5)alloys.The results indicate a multiphase structure in the alloys comprised of the main rhombohedral Gd_(2)Co_(7)and PuNi_(3)phases,with a small amount of CaCu_(5)phase.Moreover,the Y substitution results in higher abundance of the Gd_(2)Co_(7)phase.The alloy La_(0.42)Y_(0.28)Mg_(0.3)Ni_(3.5)exhibits a hydrogen storage cap acity of 1.55 wt%at 298 K and a desorption plateau pressure of 0.244 MPa.In addition,this alloy demonstrates a stable cycle life by a capacity retention of 94.2%after 50 cycles,with the main capacity degradation occurring during the initial 20 cycles.This work accentuates the potential of the La-Y-Mg-Ni-based superlattice alloys for applications in solid-state hydrogen storage.