Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a...Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a lack of efficient tools that accurately predict DES formation.The search for DES relies heavily on intuition or trial-and-error processes,leading to low success rates or missed opportunities.Recognizing that hydrogen bonds(HBs)play a central role in DES formation,we aim to identify HB features that distinguish DES from non-DES systems and use them to develop machine learning(ML)models to discover new DES systems.We first analyze the HB properties of 38 known DES and 111 known non-DES systems using their molecular dynamics(MD)simulation trajectories.The analysis reveals that DES systems have two unique features compared to non-DES systems:The DESs have①more imbalance between the numbers of the two intra-component HBs and②more and stronger inter-component HBs.Based on these results,we develop 30 ML models using ten algorithms and three types of HB-based descriptors.The model performance is first benchmarked using the average and minimal receiver operating characteristic(ROC)-area under the curve(AUC)values.We also analyze the importance of individual features in the models,and the results are consistent with the simulation-based statistical analysis.Finally,we validate the models using the experimental data of 34 systems.The extra trees forest model outperforms the other models in the validation,with an ROC-AUC of 0.88.Our work illustrates the importance of HBs in DES formation and shows the potential of ML in discovering new DESs.展开更多
Focusing on the use of imidazolium ionic liquids and quaternary ammonium salts-based deep eutectic solvents for the separation of phenols and nitrogen-containing heteroaromatics,the role of heteroaromatics as specific...Focusing on the use of imidazolium ionic liquids and quaternary ammonium salts-based deep eutectic solvents for the separation of phenols and nitrogen-containing heteroaromatics,the role of heteroaromatics as specific sites for hydrogen bond-based separation has been investigated.These environmentally friendly solvents are known for their ability to form hydrogen bonds with heteroatoms,a key aspect in separation processes.We quantified the hydrogen bond interaction energy to reach the threshold energy for efficient O-and N-heteroaromatics separation.This article provides an in-depth study of the structural nuances of different hydrogen bonding sites and their affinity properties while conducting a comparative evaluation of the separation efficiency of ionic liquids and deep eutectic solvents from a thermodynamic perspective.Results showed that phenols with dual hydrogen bonding recognition sites were easier to separate than nitrogen-containing heteroaromatics.Imidazolium ionic liquids were more suitable for the extraction of nonbasic nitrogen-containing heteroaromatics,and quaternary ammonium salts-based deep eutectic solvents are more effective for phenols and basic nitrogen-containing heteroaromatics,which was confirmed by Fourier transform infrared spectroscopy and empirical tests.Therefore,this study provides a theoretical basis for the strategy design and selection of extractants for the efficient separation of O-and N-containing aromatic compounds.展开更多
The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulat...The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulating the structural chemistry of EDL via the introduction of intermolecular hydrogen bonds has been proposed(p-hydroxybenzoic acid(pHA)is selected as proof-of-concept).According to the molecular dynamics(MD)simulation and density functional theory(DFT)calculation results,the existence of hydrogen bonds realizes the anion structural rearrangement in the EDL,reduces the lowest unoccupied molecular orbital(LUMO)energy level of anions in the EDL,and the number of free solvent molecules,which promotes the formation of inorganic species-enriched SEI and eventually achieves the dendrite-free Li deposition.Based on this strategy,Li‖Cu cells can stably run over 185 cycles with an accumulated active Li loss of only 2.27 mAh cm^(-2),and the long-term cycle stability of Li‖Li cells is increased to 1200 h.In addition,the full cell pairing with the commercial LiFePO_(4)(LFP)cathodes exhibits stable cycling performance at 1C,with a capacity retention close to 90%after 200 cycles.展开更多
The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) io...The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) ions in OIHMHs is primarily confined to the low energy region,resulting in yellow or red emissions.To date,there are few reports about green emission of Sb^(3+)-doped OIHMHs.Here,we present a novel approach for regulating the luminescence of Sb^(3+) ions in 0D C_(10)H_(2)_(2)N_(6)InCl_(7)·H_(2)O via hydrogen bond network,in which water molecules act as agents for hydrogen bonding.Sb^(3+)-doped C_(10)H_(2)2N_(6)InCl_(7)·H_(2)O shows a broadband green emission peaking at 540 nm and a high photoluminescence quantum yield(PLQY)of 80%.It is found that the intense green emission stems from the radiative recombination of the self-trapped excitons(STEs).Upon removal of water molecules with heat,C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7) generates yellow emis-sion,attributed to the breaking of the hydrogen bond network and large structural distortions of excited state.Once water molecules are adsorbed by C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7),it can subsequently emit green light.This water-induced reversible emission switching is successfully used for optical security and information encryption.Our findings expand the under-standing of how the local coordination structure influences the photophysical mechanism in Sb^(3+)-doped metal halides and provide a novel method to control the STEs emission.展开更多
Organic compounds have the advantages of green sustainability and high designability,but their high solubility leads to poor durability of zinc-organic batteries.Herein,a high-performance quinone-based polymer(H-PNADB...Organic compounds have the advantages of green sustainability and high designability,but their high solubility leads to poor durability of zinc-organic batteries.Herein,a high-performance quinone-based polymer(H-PNADBQ)material is designed by introducing an intramolecular hydrogen bonding(HB)strategy.The intramolecular HB(C=O⋯N-H)is formed in the reaction of 1,4-benzoquinone and 1,5-naphthalene diamine,which efficiently reduces the H-PNADBQ solubility and enhances its charge transfer in theory.In situ ultraviolet-visible analysis further reveals the insolubility of H-PNADBQ during the electrochemical cycles,enabling high durability at different current densities.Specifically,the H-PNADBQ electrode with high loading(10 mg cm^(-2))performs a long cycling life at 125 mA g^(-1)(>290 cycles).The H-PNADBQ also shows high rate capability(137.1 mAh g^(−1)at 25 A g^(−1))due to significantly improved kinetics inducted by intramolecular HB.This work provides an efficient approach toward insoluble organic electrode materials.展开更多
Inspired by natural photosynthesis,fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues.Herein,NH_(2)-MIL-125(Ti)/Zn_(0.5)Cd_(0.5)S/NiS(NMT...Inspired by natural photosynthesis,fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues.Herein,NH_(2)-MIL-125(Ti)/Zn_(0.5)Cd_(0.5)S/NiS(NMT/ZCS/NiS)S-scheme heterojunction with interfacial coordination bonds is successfully synthesized through in-situ solvothermal strategy.Notably,the optimal NMT/ZCS/NiS S-scheme heterojunction exhibits comparable photocatalytic H_(2)evolution(PHE)rate of about 14876.7μmol h^(−1)g^(−1)with apparent quantum yield of 24.2%at 420 nm,which is significantly higher than that of recently reported MOFs-based photocatalysts.The interfacial coordination bonds(Zn–N,Cd–N,and Ni–N bonds)accelerate the separation and transfer of photogenerated charges,and the NiS as cocatalyst can provide more catalytically active sites,which synergistically improve the photocatalytic performance.Moreover,theoretical calculation results display that the construction of NMT/ZCS/NiS S-scheme heterojunction also optimize the binding energy of active site-adsorbed hydrogen atoms to enable fast adsorption and desorption.Photoassisted Kelvin probe force microscopy,in-situ irradiation X-ray photoelectron spectroscopy,femtosecond transient absorption spectroscopy,and theoretical calculations provide sufficient evidence of the S-scheme charge migration mechanism.This work offers unique viewpoints for simultaneously accelerating the charge dynamics and optimizing the binding strength between the active sites and hydrogen adsorbates over S-scheme heterojunction.展开更多
Adding Na_(2)CO_(3) to the NaHCO_(3) cooling crystallizer, using the common ion effect to promote crystallization and improve product morphology, is a new process recently proposed in the literature. However, the mech...Adding Na_(2)CO_(3) to the NaHCO_(3) cooling crystallizer, using the common ion effect to promote crystallization and improve product morphology, is a new process recently proposed in the literature. However, the mechanism of the impact of Na_(2)CO_(3)on the crystal morphology is still indeterminate. In this work, the crystallization of NaHCO_(3)in water and Na_(2)CO_(3)–NaHCO_(3) aqueous solution was investigated by experiments and molecular dynamics simulations(MD). The crystallization results demonstrate that the morphology of NaHCO_(3) crystal changed gradually from needle-like to flake structure with the addition of Na_(2)CO_(3). The simulation results indicate that the layer docking model and the modified attachment energy formula without considering the roughness of crystal surface can obtain the crystal morphology in agreement with the experimental results, but the lower molecules of the crystal layer have to be fixed during MD. Thermodynamic calculation of the NaHCO_(3) crystallization process verifies that the common ion effect from Na^(+)and the ionization equilibrium transformation from CO_(3)^(2-) jointly promote the precipitation of NaHCO_(3) crystal. The radial distribution function analysis indicates that the oxygen atoms of Na_(2)CO_(3) formed strong hydrogen bonds with the hydrogen atoms of the(0 1 1) face, which weakened the hydration of water molecules at the crystal surface, resulting in a significant change in the attachment energy of this crystal surface. In addition, Na+and CO_(3)^(2-) are more likely to accumulate on the(011) face,resulting in the fastest growth rate on this crystal surface, which eventually leads to a change in crystal morphology from needle-like to flake-like.展开更多
Alumina(Al_(2)O_(3))is widely used in the chemical industry as the catalyst and support due to its high specific surface area,abundant pore size distribution and chemical stability.However,the occurrence of hydration ...Alumina(Al_(2)O_(3))is widely used in the chemical industry as the catalyst and support due to its high specific surface area,abundant pore size distribution and chemical stability.However,the occurrence of hydration in water environment,result in outstanding decrease in specific surface area and collapse of pore structure.In this work,dodecyl phosphoric acid(PA)is used to modify the surface of Al_(2)O_(3)to obtain a series of hydrophobic material(Al_(2)O_(3)-PA).Based on XPS and NMR analysis,PA is chemically bonded on Al_(2)O_(3)to form PAOAAl bond.Furthermore,BET and WCA results display that Al_(2)O_(3)-1PA exhibits excellent the hydrophobicity and hydrothermal stability while maintains the pore structure.Take it as the substrate to support the Pd nanoparticles,the as-prepared Pd/Al_(2)O_(3)-PA shows the superior catalytic performance in the hydrogenation of phenol and anthraquinone relative to Pd/Al_(2)O_(3),indicating the accessibility of Pd sites after PA modification.Especially,the significantly enhanced stability is also obtained in four cycles for aqueous phenol hydrogenation.This can be ascribed that the PA modification inhibits the aggregation of Pd nanoparticles and the products adhesion in the reaction process.The extension of PA coatings to monolithic catalysts could expand their current capabilities in industrial applications and warrants ongoing investigation.展开更多
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ...The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.展开更多
The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantl...The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.展开更多
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper...Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.展开更多
Objective:Glucose-6-phosphate isomerase(GPI)deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants.This disorder exhibits wide heterogeneity in its clinical manifestations and mole...Objective:Glucose-6-phosphate isomerase(GPI)deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants.This disorder exhibits wide heterogeneity in its clinical manifestations and molecular characteristics,often posing challenges for precise diagnoses using conventional methods.To this end,this study aimed to identify the novel variants responsible for GPI deficiency in a Chinese family.Methods:The clinical manifestations of the patient were summarized and analyzed for GPI deficiency phenotype diagnosis.Novel compound heterozygous variants of the GPI gene,c.174C>A(p.Asn58Lys)and c.1538G>T(p.Trp513Leu),were identified using whole-exome and Sanger sequencing.The AlphaFold program and Chimera software were used to analyze the effects of compound heterozygous variants on GPI structure.Results:By characterizing 53 GPI missense/nonsense variants from previous literature and two novel missense variants identified in this study,we found that most variants were located in exons 3,4,12,and 18,with a few localized in exons 8,9,and 14.This study identified novel compound heterozygous variants associated with GPI deficiency.These pathogenic variants disrupt hydrogen bonds formed by highly conserved GPI amino acids.Conclusion:Early family-based sequencing analyses,especially for patients with congenital anemia,can help increase diagnostic accuracy for GPI deficiency,improve child healthcare,and enable genetic counseling.展开更多
Polymeric materials used for the polymer bonded explosive(PBX)or other energetic composite materials(ECMs)that simultaneously possess excellent mechanical properties and high self-healing ability,convenient healing,an...Polymeric materials used for the polymer bonded explosive(PBX)or other energetic composite materials(ECMs)that simultaneously possess excellent mechanical properties and high self-healing ability,convenient healing,and facile fabrication are always a huge challenge.Herein,self-healing linear polyurethane elastomers(PTMEG2000-IPDI-DAPU,denoted as 2I-DAPU)with high healing efficiency and mechanical properties were facilely fabricated by constructing reversible covalent bonds and dynamic hard domains into polymer chains.Furthermore,a TATB-based PBX using as-prepared 2I-DAPU polymer as the binder was constructed,disclosing an excellent self-healing property to heal cracks generated during fabrication,transportation and storage.The damage healing manner of such a PBX sample was investigated by means of prefabricated damage through mechanical load,heal treatment via heating at high temperature,and CT-scanning the inner structure and mechanical property characterization via Brazilian test.The self-healing mechanism of internal damage in PBX was preliminarily explored.We propose that this 2I-DAPU binder with Diels-Alder bonds could generate plentiful active surface groups resulting from damage and drive self-healing at fitting temperature and increase the slightly packed hard phase via incorporating a small amount of hydrogen bonds.This work may offer a novel strategy for improving mechanical property and healing ability in the field of self-healing material which could help expand its applications with enhanced versatility in mechanical-enhanced functional materials.展开更多
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year...Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.展开更多
The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide incl...The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium.展开更多
The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to ...The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.展开更多
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro...Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.展开更多
Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performan...Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performance for hydrogen evolution reaction(HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS_(2)-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential(68 m V) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy(ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S-H* peak of the Ni S_(2)-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the Ni S_(2)-VS 5.9% has the optimal |ΔG^(H*)| of 0.17 e V. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy.展开更多
While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is curr...While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is currently believed to be a reliable solution for global warming and the pollution challenges arising from fossil fuels, making it the resilient fuel of the future. However, the sustainability of green hydrogen technologies is yet to be achieved. In this context, generation of green hydrogen with the aid of deep eutectic solvents(DESs) as green mixtures has been demonstrated as a promising research area. This systematic review article covers green hydrogen generation through water splitting and biomass fermentation when DESs are utilized within the generation process. It also discusses the incorporation of DESs in fuel cell technologies. DESs can play a variety of roles such as solvent, electrolyte, or precursor;colloidal suspension and reaction medium;galvanic replacement, shape-controlling, decoration, or extractive agent;finally oxidant. These roles are relevant to several methods of green hydrogen generation, including electrocatalysis, photocatalysis, and fermentation. As such, it is of utmost importance to screen potential DES formulations and determine how they can function in and contribute throughout the green hydrogen mobility stages. The realization of super green hydrogen generation stands out as a pivotal milestone in our journey towards achieving a more sustainable form of development;DESs have great potential in making this milestone achievable. Overall, incorporating DESs in hydrogen generation constitutes a promising research area and offers potential scalability for green hydrogen production, storage,transport, and utilization.展开更多
基金supported by Ignite Research Collaborations(IRC),Startup funds,and the UK Artificial Intelligence(AI)in Medicine Research Alliance Pilot(NCATS UL1TR001998 and NCI P30 CA177558)。
文摘Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a lack of efficient tools that accurately predict DES formation.The search for DES relies heavily on intuition or trial-and-error processes,leading to low success rates or missed opportunities.Recognizing that hydrogen bonds(HBs)play a central role in DES formation,we aim to identify HB features that distinguish DES from non-DES systems and use them to develop machine learning(ML)models to discover new DES systems.We first analyze the HB properties of 38 known DES and 111 known non-DES systems using their molecular dynamics(MD)simulation trajectories.The analysis reveals that DES systems have two unique features compared to non-DES systems:The DESs have①more imbalance between the numbers of the two intra-component HBs and②more and stronger inter-component HBs.Based on these results,we develop 30 ML models using ten algorithms and three types of HB-based descriptors.The model performance is first benchmarked using the average and minimal receiver operating characteristic(ROC)-area under the curve(AUC)values.We also analyze the importance of individual features in the models,and the results are consistent with the simulation-based statistical analysis.Finally,we validate the models using the experimental data of 34 systems.The extra trees forest model outperforms the other models in the validation,with an ROC-AUC of 0.88.Our work illustrates the importance of HBs in DES formation and shows the potential of ML in discovering new DESs.
基金support from the National Natural Science Foundation of China(22038008)the science and technology innovation project of China Shenhua Coal to Liquid and Chemical Company Limited(MZYHG-2021-01).
文摘Focusing on the use of imidazolium ionic liquids and quaternary ammonium salts-based deep eutectic solvents for the separation of phenols and nitrogen-containing heteroaromatics,the role of heteroaromatics as specific sites for hydrogen bond-based separation has been investigated.These environmentally friendly solvents are known for their ability to form hydrogen bonds with heteroatoms,a key aspect in separation processes.We quantified the hydrogen bond interaction energy to reach the threshold energy for efficient O-and N-heteroaromatics separation.This article provides an in-depth study of the structural nuances of different hydrogen bonding sites and their affinity properties while conducting a comparative evaluation of the separation efficiency of ionic liquids and deep eutectic solvents from a thermodynamic perspective.Results showed that phenols with dual hydrogen bonding recognition sites were easier to separate than nitrogen-containing heteroaromatics.Imidazolium ionic liquids were more suitable for the extraction of nonbasic nitrogen-containing heteroaromatics,and quaternary ammonium salts-based deep eutectic solvents are more effective for phenols and basic nitrogen-containing heteroaromatics,which was confirmed by Fourier transform infrared spectroscopy and empirical tests.Therefore,this study provides a theoretical basis for the strategy design and selection of extractants for the efficient separation of O-and N-containing aromatic compounds.
基金financially supported by the National Natural Science Foundation of China(Grant No.21905033,52271201)the Key Research and DevelopmentProgram of Sichuan Province(Grant No.2022YFG0100)+1 种基金the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(Grant No.2022ZYD0045)the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(Grant No.2020P4FZG02A)
文摘The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulating the structural chemistry of EDL via the introduction of intermolecular hydrogen bonds has been proposed(p-hydroxybenzoic acid(pHA)is selected as proof-of-concept).According to the molecular dynamics(MD)simulation and density functional theory(DFT)calculation results,the existence of hydrogen bonds realizes the anion structural rearrangement in the EDL,reduces the lowest unoccupied molecular orbital(LUMO)energy level of anions in the EDL,and the number of free solvent molecules,which promotes the formation of inorganic species-enriched SEI and eventually achieves the dendrite-free Li deposition.Based on this strategy,Li‖Cu cells can stably run over 185 cycles with an accumulated active Li loss of only 2.27 mAh cm^(-2),and the long-term cycle stability of Li‖Li cells is increased to 1200 h.In addition,the full cell pairing with the commercial LiFePO_(4)(LFP)cathodes exhibits stable cycling performance at 1C,with a capacity retention close to 90%after 200 cycles.
基金National Natural Science Foundation of China(11974063)Graduate research innovation project,School of Optoelectronic Engineering,Chongqing University(GDYKC2023002)+1 种基金Fundamental Research Funds for the Central Universities(2022CDJQY-010)The authors extend their appreciation to the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project no.(IFKSUOR3-073-9).
文摘The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) ions in OIHMHs is primarily confined to the low energy region,resulting in yellow or red emissions.To date,there are few reports about green emission of Sb^(3+)-doped OIHMHs.Here,we present a novel approach for regulating the luminescence of Sb^(3+) ions in 0D C_(10)H_(2)_(2)N_(6)InCl_(7)·H_(2)O via hydrogen bond network,in which water molecules act as agents for hydrogen bonding.Sb^(3+)-doped C_(10)H_(2)2N_(6)InCl_(7)·H_(2)O shows a broadband green emission peaking at 540 nm and a high photoluminescence quantum yield(PLQY)of 80%.It is found that the intense green emission stems from the radiative recombination of the self-trapped excitons(STEs).Upon removal of water molecules with heat,C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7) generates yellow emis-sion,attributed to the breaking of the hydrogen bond network and large structural distortions of excited state.Once water molecules are adsorbed by C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7),it can subsequently emit green light.This water-induced reversible emission switching is successfully used for optical security and information encryption.Our findings expand the under-standing of how the local coordination structure influences the photophysical mechanism in Sb^(3+)-doped metal halides and provide a novel method to control the STEs emission.
基金supported by the National Natural Science Foundation of China (22279063 and 52001170)the Fundamental Research Funds for the Central Universities+2 种基金Tianjin Natural Science Foundation (No. 22JCYBJC00590)the financial support by the Ministry of Education, Singapore, under its Academic Research Fund Tier 1 Thematic (RT8/22)the Haihe Laboratory of Sustainable Chemical Transformations, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) for financial support
文摘Organic compounds have the advantages of green sustainability and high designability,but their high solubility leads to poor durability of zinc-organic batteries.Herein,a high-performance quinone-based polymer(H-PNADBQ)material is designed by introducing an intramolecular hydrogen bonding(HB)strategy.The intramolecular HB(C=O⋯N-H)is formed in the reaction of 1,4-benzoquinone and 1,5-naphthalene diamine,which efficiently reduces the H-PNADBQ solubility and enhances its charge transfer in theory.In situ ultraviolet-visible analysis further reveals the insolubility of H-PNADBQ during the electrochemical cycles,enabling high durability at different current densities.Specifically,the H-PNADBQ electrode with high loading(10 mg cm^(-2))performs a long cycling life at 125 mA g^(-1)(>290 cycles).The H-PNADBQ also shows high rate capability(137.1 mAh g^(−1)at 25 A g^(−1))due to significantly improved kinetics inducted by intramolecular HB.This work provides an efficient approach toward insoluble organic electrode materials.
文摘Inspired by natural photosynthesis,fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues.Herein,NH_(2)-MIL-125(Ti)/Zn_(0.5)Cd_(0.5)S/NiS(NMT/ZCS/NiS)S-scheme heterojunction with interfacial coordination bonds is successfully synthesized through in-situ solvothermal strategy.Notably,the optimal NMT/ZCS/NiS S-scheme heterojunction exhibits comparable photocatalytic H_(2)evolution(PHE)rate of about 14876.7μmol h^(−1)g^(−1)with apparent quantum yield of 24.2%at 420 nm,which is significantly higher than that of recently reported MOFs-based photocatalysts.The interfacial coordination bonds(Zn–N,Cd–N,and Ni–N bonds)accelerate the separation and transfer of photogenerated charges,and the NiS as cocatalyst can provide more catalytically active sites,which synergistically improve the photocatalytic performance.Moreover,theoretical calculation results display that the construction of NMT/ZCS/NiS S-scheme heterojunction also optimize the binding energy of active site-adsorbed hydrogen atoms to enable fast adsorption and desorption.Photoassisted Kelvin probe force microscopy,in-situ irradiation X-ray photoelectron spectroscopy,femtosecond transient absorption spectroscopy,and theoretical calculations provide sufficient evidence of the S-scheme charge migration mechanism.This work offers unique viewpoints for simultaneously accelerating the charge dynamics and optimizing the binding strength between the active sites and hydrogen adsorbates over S-scheme heterojunction.
基金supported by the National Natural Science Foundation of China (21878143)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Adding Na_(2)CO_(3) to the NaHCO_(3) cooling crystallizer, using the common ion effect to promote crystallization and improve product morphology, is a new process recently proposed in the literature. However, the mechanism of the impact of Na_(2)CO_(3)on the crystal morphology is still indeterminate. In this work, the crystallization of NaHCO_(3)in water and Na_(2)CO_(3)–NaHCO_(3) aqueous solution was investigated by experiments and molecular dynamics simulations(MD). The crystallization results demonstrate that the morphology of NaHCO_(3) crystal changed gradually from needle-like to flake structure with the addition of Na_(2)CO_(3). The simulation results indicate that the layer docking model and the modified attachment energy formula without considering the roughness of crystal surface can obtain the crystal morphology in agreement with the experimental results, but the lower molecules of the crystal layer have to be fixed during MD. Thermodynamic calculation of the NaHCO_(3) crystallization process verifies that the common ion effect from Na^(+)and the ionization equilibrium transformation from CO_(3)^(2-) jointly promote the precipitation of NaHCO_(3) crystal. The radial distribution function analysis indicates that the oxygen atoms of Na_(2)CO_(3) formed strong hydrogen bonds with the hydrogen atoms of the(0 1 1) face, which weakened the hydration of water molecules at the crystal surface, resulting in a significant change in the attachment energy of this crystal surface. In addition, Na+and CO_(3)^(2-) are more likely to accumulate on the(011) face,resulting in the fastest growth rate on this crystal surface, which eventually leads to a change in crystal morphology from needle-like to flake-like.
基金supported by National Key Research&Development Program of China(2021YFB3801600)Fundamental Research Funds for the Central University(buctrc201921,JD2223,12060093063)Innovative Achievement Commercialization Service-Platform of Industrial Catalysis(2019-00900-2-1).
文摘Alumina(Al_(2)O_(3))is widely used in the chemical industry as the catalyst and support due to its high specific surface area,abundant pore size distribution and chemical stability.However,the occurrence of hydration in water environment,result in outstanding decrease in specific surface area and collapse of pore structure.In this work,dodecyl phosphoric acid(PA)is used to modify the surface of Al_(2)O_(3)to obtain a series of hydrophobic material(Al_(2)O_(3)-PA).Based on XPS and NMR analysis,PA is chemically bonded on Al_(2)O_(3)to form PAOAAl bond.Furthermore,BET and WCA results display that Al_(2)O_(3)-1PA exhibits excellent the hydrophobicity and hydrothermal stability while maintains the pore structure.Take it as the substrate to support the Pd nanoparticles,the as-prepared Pd/Al_(2)O_(3)-PA shows the superior catalytic performance in the hydrogenation of phenol and anthraquinone relative to Pd/Al_(2)O_(3),indicating the accessibility of Pd sites after PA modification.Especially,the significantly enhanced stability is also obtained in four cycles for aqueous phenol hydrogenation.This can be ascribed that the PA modification inhibits the aggregation of Pd nanoparticles and the products adhesion in the reaction process.The extension of PA coatings to monolithic catalysts could expand their current capabilities in industrial applications and warrants ongoing investigation.
基金supported by the National Natural Science Foundation of China(22108238,21878259)the Zhejiang Provincial Natural Science Foundation of China(LR18B060001)+5 种基金Anhui Provincial Natural Science Founda-tion(1908085QB68)the Natural Science Foundation of the Anhui Higher Education Institutions of China(KJ2020A0275)Major Science and Technology Project of Anhui Province(201903a05020055)Foundation of Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology(ZJKL-ACEMT-1802)China Postdoctoral Science Foundation(2019M662060,2020T130580)Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology(BM2012110).
文摘The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.
基金supported by the National Natural Science Foundation of China(Grant No.42072168)the National Key R&D Program of China(Grant No.2019YFC0605405)the Fundamental Research Funds for the Central Universities(Grant No.2023ZKPYDC07)。
文摘The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.
基金supported by the National Key Research and Development Program of China (2022YFB4002100)the development project of Zhejiang Province's "Jianbing" and "Lingyan" (2023C01226)+4 种基金the National Natural Science Foundation of China (22278364, U22A20432, 22238008, 22211530045, and 22178308)the Fundamental Research Funds for the Central Universities (226-2022-00044 and 226-2022-00055)the Science Foundation of Donghai Laboratory (DH-2022ZY0009)the Startup Foundation for Hundred-Talent Program of Zhejiang UniversityScientific Research Fund of Zhejiang Provincial Education Department.
文摘Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.
文摘Objective:Glucose-6-phosphate isomerase(GPI)deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants.This disorder exhibits wide heterogeneity in its clinical manifestations and molecular characteristics,often posing challenges for precise diagnoses using conventional methods.To this end,this study aimed to identify the novel variants responsible for GPI deficiency in a Chinese family.Methods:The clinical manifestations of the patient were summarized and analyzed for GPI deficiency phenotype diagnosis.Novel compound heterozygous variants of the GPI gene,c.174C>A(p.Asn58Lys)and c.1538G>T(p.Trp513Leu),were identified using whole-exome and Sanger sequencing.The AlphaFold program and Chimera software were used to analyze the effects of compound heterozygous variants on GPI structure.Results:By characterizing 53 GPI missense/nonsense variants from previous literature and two novel missense variants identified in this study,we found that most variants were located in exons 3,4,12,and 18,with a few localized in exons 8,9,and 14.This study identified novel compound heterozygous variants associated with GPI deficiency.These pathogenic variants disrupt hydrogen bonds formed by highly conserved GPI amino acids.Conclusion:Early family-based sequencing analyses,especially for patients with congenital anemia,can help increase diagnostic accuracy for GPI deficiency,improve child healthcare,and enable genetic counseling.
基金the National Natural Science Foundation of China(Grant No.21875229)NSAF(Grant No.U2030202)for grants in support of this wok。
文摘Polymeric materials used for the polymer bonded explosive(PBX)or other energetic composite materials(ECMs)that simultaneously possess excellent mechanical properties and high self-healing ability,convenient healing,and facile fabrication are always a huge challenge.Herein,self-healing linear polyurethane elastomers(PTMEG2000-IPDI-DAPU,denoted as 2I-DAPU)with high healing efficiency and mechanical properties were facilely fabricated by constructing reversible covalent bonds and dynamic hard domains into polymer chains.Furthermore,a TATB-based PBX using as-prepared 2I-DAPU polymer as the binder was constructed,disclosing an excellent self-healing property to heal cracks generated during fabrication,transportation and storage.The damage healing manner of such a PBX sample was investigated by means of prefabricated damage through mechanical load,heal treatment via heating at high temperature,and CT-scanning the inner structure and mechanical property characterization via Brazilian test.The self-healing mechanism of internal damage in PBX was preliminarily explored.We propose that this 2I-DAPU binder with Diels-Alder bonds could generate plentiful active surface groups resulting from damage and drive self-healing at fitting temperature and increase the slightly packed hard phase via incorporating a small amount of hydrogen bonds.This work may offer a novel strategy for improving mechanical property and healing ability in the field of self-healing material which could help expand its applications with enhanced versatility in mechanical-enhanced functional materials.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51902101 and 21875203)the Natural Science Foundation of Hunan Province(Nos.2021JJ40044 and 2023JJ50287)Natural Science Foundation of Jiangsu Province(No.BK20201381).
文摘Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.
基金Agency for Science,Technology and Research(A*STAR),under the RIE2020 Advanced Manufacturing and Engineering(AME)Programmatic Grant(Grant no.A18B1b0061)。
文摘The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium.
基金supported by the National Natural Science Foundation of China (Grant Nos.52072272,52171145 and 22109120)the Zhejiang Provincial Natural Science Foundation of China (LQ21B030002)+1 种基金the Zhejiang Provincial Special Support Program for High-level Talents (2019R52042)the Key programs for Science and Technology Innovation of Wenzhou (ZG2022037)。
文摘The scarcity,high cost and susceptibility to CO of Platinum severely restrict its application in alkaline hydrogen oxidation reaction(HOR).Hybridizing Pt with other transition metals provides an effective strategy to modulate its catalytic HOR performance,but at the cost of mass activity due to the coverage of modifiers on Pt surface.Herein,we constructed dual junctions'Pt/nitrogen-doped carbon(Pt/NC)andδ-MoC/NC to modify electronic structure of Pt via interfacial electron transfer to acquire Pt-MoC@NC catalyst with electron-deficient Pt nanoparticles,simultaneously endowing it with high mass activity and durability of alkaline HOR.Moreover,the unique structure of Pt-MoC@NC endows Pt with a high COtolerance at 1,000 ppm CO/H_(2),a quality that commercial Pt-C catalyst lacks.The theoretical calculations not only confirm the diffusion of electrons from Pt/NC to Mo C/NC could occur,but also demonstrate the negative shift of Pt d-band center for the optimized binding energies of*H,*OH and CO.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20213030040590)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2021K1A4A8A01079455)。
文摘Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.
基金funded by the National Natural Science Foundation of China (NSFC) (Nos. 22221001, 22201115, 21931001, and 21922105)the Special Fund Project of Guiding Scientific and Technological Innovation Development of Gansu Province (2019ZX–04)+3 种基金the 111 Project (B20027)by the Fundamental Research Funds for the Central Universities (lzujbky-2023-eyt03)support Natural Science Foundation of Gansu Providence (22JR5RA540)Gansu Province Youth Science and Technology Talent Promotion Project (GXH202220530-02)。
文摘Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performance for hydrogen evolution reaction(HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS_(2)-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential(68 m V) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy(ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S-H* peak of the Ni S_(2)-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the Ni S_(2)-VS 5.9% has the optimal |ΔG^(H*)| of 0.17 e V. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy.
基金the Ministry of Higher Education,Research and Innovation(MoHERI)Oman for their support of this research through TRC block funding Grant no.:BFP/RGP/EBR/22/378。
文摘While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is currently believed to be a reliable solution for global warming and the pollution challenges arising from fossil fuels, making it the resilient fuel of the future. However, the sustainability of green hydrogen technologies is yet to be achieved. In this context, generation of green hydrogen with the aid of deep eutectic solvents(DESs) as green mixtures has been demonstrated as a promising research area. This systematic review article covers green hydrogen generation through water splitting and biomass fermentation when DESs are utilized within the generation process. It also discusses the incorporation of DESs in fuel cell technologies. DESs can play a variety of roles such as solvent, electrolyte, or precursor;colloidal suspension and reaction medium;galvanic replacement, shape-controlling, decoration, or extractive agent;finally oxidant. These roles are relevant to several methods of green hydrogen generation, including electrocatalysis, photocatalysis, and fermentation. As such, it is of utmost importance to screen potential DES formulations and determine how they can function in and contribute throughout the green hydrogen mobility stages. The realization of super green hydrogen generation stands out as a pivotal milestone in our journey towards achieving a more sustainable form of development;DESs have great potential in making this milestone achievable. Overall, incorporating DESs in hydrogen generation constitutes a promising research area and offers potential scalability for green hydrogen production, storage,transport, and utilization.