期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
3-D FINITE ELEMENT ANALYSIS OF THE EFFECT OF WELDING RESIDUAL STRESS ON HYDROGEN DIFFUSION IN HYDROGEN CONTAINED ENVIRONMENT 被引量:5
1
作者 W.C. Jiang J.M. Gong J.Q. Tang H. Chen S.T. Tu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第5期347-354,共8页
The hydrogen distribution of 16MnR steel weldment in hydrogen contained environment was calculated using the finite element method ( FEM). The effect of welding residual stress on hydrogen diffusion has been discuss... The hydrogen distribution of 16MnR steel weldment in hydrogen contained environment was calculated using the finite element method ( FEM). The effect of welding residual stress on hydrogen diffusion has been discussed using a 3-D sequential coupling finite element analysis procedure complied by Abaqus code. The hydrogen diffusion coefficient in weld metal, the heat affected zone (HAZ), and the base metal of the 16MnR steel weldment were measured using the electrochemical permeation technique. The hydrogen diffusion without the effect of stress was also calculated and compared. Owing to the existence of welding residual stress, the hydrogen concentration was obviously increased and the hydrogen wouM diffuse and accumulate in the higher stress region. 展开更多
关键词 16MnR steel hydrogen diffusion welding residual stress finite element analysis
下载PDF
Molecular mechanics and dynamics simulation of hydrogen diffusion in aluminum melt 被引量:5
2
作者 Huo-sheng Wang Gao-sheng Fu +2 位作者 Chao-zeng Cheng Li-li Song Lian-deng Wang 《China Foundry》 SCIE 2017年第6期478-484,共7页
The main impurities in aluminum melt are hydrogen and Al_2O_3,which can deteriorate melt quality and materials performance.However,the diffusion process of H atoms in aluminum melt and the interactions among Al atoms,... The main impurities in aluminum melt are hydrogen and Al_2O_3,which can deteriorate melt quality and materials performance.However,the diffusion process of H atoms in aluminum melt and the interactions among Al atoms,Al_2O_3 and hydrogen have been studied rarely.Molecular mechanics and dynamics simulations are employed to study the diffusion behaviors of different types of hydrogen,such as free H atoms,H atoms in H_2 and H^+ions in H_2O using COMPASS force field.Correspondingly,force field types h,h1h and h1o are used to describe different types of hydrogen which are labeled as H_h,H_(h1h) and H_(h1o).The results show that the adsorption areas are maximum for H_(h1o),followed by H_(h1h) and H_h.The diffusion ability of H_(h1o) is the strongest whereas H_h is hard to diffuse in aluminum melt because of the differences in radius and potential well depth of various types of hydrogen.Al_2O_3 cluster makes the Al atoms array disordered,creating the energy conditions for hydrogen diffusion in aluminum melt.Al_2O_3 improves the diffusion of H_h and H_(h1o),and constrains H_(h1h) which accumulates around it and forms gas porosities in aluminum.H_(h1o) is the most dispersive in aluminum melt,moreover,the distance of Al-H_(h1o) is shorter than that of Al-H_(h1h),both of which are detrimental to the removal of H_(h1o).The simulation results indicate that the gas porosities can be eliminated by the removal of Al_2O_3 inclusions,and the dispersive hydrogen can be removed by adsorption function of gas bubbles or molten fluxes. 展开更多
关键词 hydrogen in aluminum melt molecular mechanics simulation molecular dynamics simulation COMPASS hydrogen diffusion
下载PDF
Simulation of hydrogen diffusion in welded joint of X80 pipeline steel 被引量:2
3
作者 严春妍 刘翠英 张根元 《Journal of Central South University》 SCIE EI CAS 2014年第12期4432-4437,共6页
Hydrogen diffusion coefficients of different regions in the welded joint of X80 pipeline steel were measured using the electro-chemical permeation technique. Using ABAQUS software, hydrogen diffusion in X80 pipeline s... Hydrogen diffusion coefficients of different regions in the welded joint of X80 pipeline steel were measured using the electro-chemical permeation technique. Using ABAQUS software, hydrogen diffusion in X80 pipeline steel welded joint was studied in consideration of the inhomogeneity of the welding zone, and temperature-dependent thermo-physical and mechanical properties of the metals. A three dimensional finite element model was developed and a coupled thermo-mechanical-diffusion analysis was performed. Hydrogen concentration distribution across the welded joint was obtained. It is found that the postweld residual hydrogen exhibits a non-uniform distribution across the welded joint. A maximum equivalent stress occurs in the immediate vicinity of the weld metal. The heat affected zone has the highest hydrogen concentration level, followed by the weld zone and the base metal.Simulation results are well consistent with theoretical analysis. 展开更多
关键词 numerical simulation hydrogen diffusion temperature field stress field
下载PDF
Application of the Hydrogen Diffusion Model to the Hydrogen Permeation
4
作者 杨柯 曹名洲 +1 位作者 万晓景 师昌绪 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1990年第6期421-426,共6页
The model of hydrogen diffusion formerly de- veloped [1] has been applied successfully to the hydrogen permeation experiment results of three kinds of materials,α—Fe,Fe—Ti alloy and Fe—Ti—C alloy by the mathemati... The model of hydrogen diffusion formerly de- veloped [1] has been applied successfully to the hydrogen permeation experiment results of three kinds of materials,α—Fe,Fe—Ti alloy and Fe—Ti—C alloy by the mathematical fitting method.From the fitting results it was shown that the model can re- fiect well the diffusion of hydrogen in the materials with trapping.The obtained trapping parameters(α and β)can be used to explain well the diffusion of hydrogen in the samples with trapping. 展开更多
关键词 hydrogen diffusion TRAPPING Α-FE Fe-Ti alloy
下载PDF
INFLUENCE OF ALLOYING ELEMENTS ON HYDROGEN DIFFUSION USING SCM-DV-X_α
5
作者 Y.Huang D.M.Xing 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第1期71-76,共6页
The influence of alloy composition (Ti, Mn, TiN) on hydrogen diffusion in Fe was studied in detail using SCM-DV-Xα method. The voltage barriers were obtained via calculation on Fe clusters containing the alloy elemen... The influence of alloy composition (Ti, Mn, TiN) on hydrogen diffusion in Fe was studied in detail using SCM-DV-Xα method. The voltage barriers were obtained via calculation on Fe clusters containing the alloy elements such as Ti, Mn as well as the chemical compound TiN respectively. The results showed that Ti element produced deep trap in Fe, decreasing the diffusion coefficient of hydrogen elements, Mn element did not produce deep trap in Fe, decreasing the diffusion coefficient slightly and TiN in Fe produced very deep "trap" decreasing the diffusion coefficient obviously. The calculation results were in agreement with experiment results. 展开更多
关键词 hydrogen diffusion SCM-DV-Xα method CLUSTER
下载PDF
Hydrogen Diffusion in Amorphous Ti0.88Ni1.00Film
6
《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第11期0-0,共2页
Hydrogen diffusion coefficients in amorphous Ti0.88Ni1.00 film were measured using electrochemical permeation technique. Diffusion coefficients increased with increasing hydrogen concentration. Activation energy of hy... Hydrogen diffusion coefficients in amorphous Ti0.88Ni1.00 film were measured using electrochemical permeation technique. Diffusion coefficients increased with increasing hydrogen concentration. Activation energy of hydrogen diffusion was determined through measurement of the steady state anodic diffusion current density as a function of temperature, and an equation was derived to calculate the activation energy. 展开更多
关键词 hydrogen diffusion in Amorphous Ti FILM NI
下载PDF
A New Analysis of Hydrogen Diffusion in Metals with Trapping
7
作者 杨柯 曹名洲 +2 位作者 万晓景 高树俊 师昌绪 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1989年第4期247-253,共7页
A new model of hydrogen diffusion in metals has been developed,it is more efficient to describe the hydrogen diffusion with trapping in metals.In the model newly developed an impli- cit dependence on time of hydrogen ... A new model of hydrogen diffusion in metals has been developed,it is more efficient to describe the hydrogen diffusion with trapping in metals.In the model newly developed an impli- cit dependence on time of hydrogen diffusion coefficient in metals with trapping was firstly built and it is shown that hydrogen diffusion coefficient will be different at different posi- tions in a dynamic process of hydrogen diffusion in a metal. Numerical solutions of the present model were obtained by finite difference method.By changing the parameters in the model the diffusion of hydrogen in a metal and the effect of trapping were described and discussed.And the comparison between the well known McNabb and Foster's model and the present model was also made. 展开更多
关键词 hydrogen diffusion model trapping effect
下载PDF
The Kinetics of Hydrogen Diffusion in Ti_3Al-Based Alloy
8
作者 陈亚新 万晓景 《Advances in Manufacturing》 SCIE CAS 1997年第3期249-251,共3页
The Proccss of gascous hydrogcn charging into a Ti_3Al- based alloy in the temperature range of 500-650℃isinvcstigatcd. The rcsnlls snoxvc that in rclatiollshil, between the average hydrogen concentration at constant... The Proccss of gascous hydrogcn charging into a Ti_3Al- based alloy in the temperature range of 500-650℃isinvcstigatcd. The rcsnlls snoxvc that in rclatiollshil, between the average hydrogen concentration at constant tempreature and charging time reveals a parabolie rate law Applying the theory of lattice constant tcnlpcralurc and hrgillg tin rcvcals a parabolic riltc laiv. Applyillg tbcthcoly oftatticc dillbsio to allalyzc the hydrogcll diethesioll they andthat cncrgy of hydrogcn diffusion is 90.40 kJ/mol. and the equilibrium hydrogen content in the alloy depends on the temperature of the gaseous hydrogen charging process 展开更多
关键词 Ti_3Al-based alloy hydrogen diffusion
下载PDF
Study on hydrogen diffusion behavior in MlNi_(3.75) Co_(0.65) Mn_(0.4) Al_(0.2) alloy electrode by chronoamperometry
9
作者 原鲜霞 徐乃欣 《中国有色金属学会会刊:英文版》 CSCD 2001年第5期700-703,共4页
Hydrogen diffusion coefficients in MlNi 3.75 Co 0.65 Mn 0.4 Al 0.2 alloy electrode as a function of state of charge (SOC) or temperature were determined by chronoamperometry. It is found that hydrogen diffusion coeffi... Hydrogen diffusion coefficients in MlNi 3.75 Co 0.65 Mn 0.4 Al 0.2 alloy electrode as a function of state of charge (SOC) or temperature were determined by chronoamperometry. It is found that hydrogen diffusion coefficient decreases with the increase of SOC or the decrease of temperature. The activation energy for hydrogen diffusion in the alloy electrode with 50%SOC is evaluated to be 19.9?kJ/mol. 展开更多
关键词 hydrogen storage alloy electrode hydrogen diffusion coefficient chronoamperometry
下载PDF
Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention 被引量:18
10
作者 Xinfeng Li Xianfeng Ma +3 位作者 Jin Zhang Eiji Akiyama Yanfei Wang Xiaolong Song 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第6期759-773,共15页
Hydrogen dissolved in metals as a result of internal and external hydrogen can affect the mechanical properties of the metals, principally through the interactions between hydrogen and material defects. Multiple pheno... Hydrogen dissolved in metals as a result of internal and external hydrogen can affect the mechanical properties of the metals, principally through the interactions between hydrogen and material defects. Multiple phenomena such as hydrogen dissolution, hydrogen diffusion, hydrogen redistribution and hydrogen interactions with vacancies, dislocations, grain boundaries and other phase interfaces are involved in this process. Consequently, several hydrogen embrittlement(HE) mechanisms have been successively proposed to explain the HE phenomena, with the hydrogen-enhanced decohesion mechanism, hydrogenenhanced localized plasticity mechanism and hydrogen-enhanced strain-induced vacancies being some of the most important. Additionally, to reduce the risk of HE for engineering structural materials in service, surface treatments and microstructural optimization of the alloys have been suggested. In this review, we report on the progress of the studies on HE in metals, with a particular focus on steels. It focuses on four aspects:(1) hydrogen diffusion behavior;(2) hydrogen characterization methods;(3) HE mechanisms;and(4) the prevention of HE. The strengths and weaknesses of the current HE mechanisms and HE prevention methods are discussed, and specific research directions for further investigation of fundamental HE mechanisms and methods for preventing HE failure are identified. 展开更多
关键词 hydrogen embrittlement hydrogen diffusion hydrogen embrittlement mechanism PREVENTION
原文传递
Location-dependent effect of nickel on hydrogen dissociation and diffusion on Mg(0001)surface:Insights into hydrogen storage material design 被引量:4
11
作者 Zongying Han Yayun Wu +1 位作者 Hao Yu Shixue Zhou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第6期1617-1630,共14页
Density functional theory(DFT)calculations have been performed to investigate the hydrogen dissociation and diffusion on Mg(0001)surface with Ni incorporating at various locations.The results show that Ni atom is pref... Density functional theory(DFT)calculations have been performed to investigate the hydrogen dissociation and diffusion on Mg(0001)surface with Ni incorporating at various locations.The results show that Ni atom is preferentially located inside Mg matrix rather than in/over the topmost surface.Further calculations reveal that Ni atom locating in/over the topmost Mg(0001)surface exhibits excellent catalytic effect on hydrogen dissociation with an energy barrier of less than 0.05 eV.In these cases,the rate-limiting step has been converted from hydrogen dissociation to surface diffusion.In contrast,Ni doping inside Mg bulk not only does little help to hydrogen dissociation but also exhibits detrimental effect on hydrogen diffusion.Therefore,it is crucial to stabilize the Ni atom on the surface or in the topmost layer of Mg(0001)surface to maintain its catalytic effect.For all the case of Ni-incorporated Mg(0001)surfaces,the hydrogen atom prefers firstly immigrate along the surface and then penetrate into the bulk.It is expected that the theoretical findings in the present study could offer fundamental guidance to future designing on efficient Mg-based hydrogen storage materials. 展开更多
关键词 hydrogen storage hydrogen dissociation Ni incorporation hydrogen diffusion Mg
下载PDF
HYDROGEN PERMEATION AND DIFFUSION IN ALLOY INCOLOY 903 被引量:1
12
作者 XU Jian SUN Xiukui CHEN Wenxiu LI Yiyi State Key Laboratory of RSA,Institute of Metal Research,Academia Sinica,China research assistant,Institute of Metal Research,Academia Sinica,Shenyang 110015,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1993年第3期163-167,共5页
Permeability and diffusivity of hydrogen in Fe-Ni-Co based superalloy lncoloy 903 were measured over the temperature range of 220 to 420℃ using a gaseous permeation technique. The effect of strengthening phase γ'... Permeability and diffusivity of hydrogen in Fe-Ni-Co based superalloy lncoloy 903 were measured over the temperature range of 220 to 420℃ using a gaseous permeation technique. The effect of strengthening phase γ' precipitated after being aged on the hydrogen permeation and diffusion was investigated.It was indicated that the permeability and diffusivity of hydrogen in the alloy hardly depend on heat treatment condition and are not af- fected by γ' phase precipitated after being aged.The relationships between the permeability and diffusivity of hydrogen and the temperature can be respectively expressed as Φ=9.36×10^(-5)exp[-54.20(kJ/mol)/RT]mol/m·s·MPa^(1/2)and D=4.24×10^(-7)exp[-49.07(kJ/mol)/RT]m^2/s. 展开更多
关键词 hydrogen permeation hydrogen diffusion SUPERALLOY precipitation phase Incoloy 903
下载PDF
FEM Simulation of the Hydrogen Diffusion in X80 Pipeline Steel During Stacking for Slow Cooling 被引量:1
13
作者 Zhenyi Huang Qi Shi +1 位作者 Fuqiang Chen Yunfeng Shi 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第3期416-421,共6页
The influence of temperature on the hydrogen diffusion behavior in X80 pipeline steel during stacking for slow cooling was studied using electrochemical penetration method, the temperature field and the hydrogen diffu... The influence of temperature on the hydrogen diffusion behavior in X80 pipeline steel during stacking for slow cooling was studied using electrochemical penetration method, the temperature field and the hydrogen diffusion in this pipeline steel during stacking for slow cooling were simulated by ABAQUS finite element method (FEM) software. The results show that in this process there is a reciprocal relationship between the natural logarithm of hydrogen diffusion coefficient and temperature. The cooling rate decreases gradually with the increase of steel plate thickness. The hydrogen content is higher at high temperature (500-400 ℃) than that in low temperature region (300-100 ℃). The FEM simulation results are consistent with the experimental ones, and the model can be used to predict the hydrogen diffusion behavior in industrial production of X80 pipeline steel. 展开更多
关键词 X80 pipeline steel STACKING Slow cooling hydrogen diffusion Finite element method (FEM) Electrochemical penetration
原文传递
Investigation into Hydrogen Diffusion and Susceptibility of Hydrogen Embrittlement of High Strength 0Cr16Ni5Mo Steel 被引量:1
14
作者 Yong-wei SUN Ji-zhi CHEN Jun LIU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第10期961-968,共8页
High strength bolt steel 0Crl6Ni5Mo was charged with hydrogen by means of electrochemical technique to evaluate the hydrogen diffusion behavior. The bolt steels were investigated by a combination of electrochemical hy... High strength bolt steel 0Crl6Ni5Mo was charged with hydrogen by means of electrochemical technique to evaluate the hydrogen diffusion behavior. The bolt steels were investigated by a combination of electrochemical hydrogen permeation, thermal desorption spectroscopy (TDS), slow strain rate test (SSRT) and microstructure observation. The hydrogen concentration of both 10.9 grade (Rm=950-1 150 MPa) and 12.9 grade (Rm=1 150-1 250 MPa) bolt steels increases with increasing the hydrogen charging current densities and charging time. The 12.9 grade bolt steel has higher apparent diffusion coefficient than 10.9 grade steel, corresponding to the value of 4.7×10 7 mm^2/s. By means of TDS tests, the activation energies of the two experimental steels are 17.74 kJ/mol and 18.92 kJ/mol, respectively. The hydrogen traps of both grade bolt steels are dislocations and crystal lattice. The notch tensile strength of the steels is reduced with the hydrogen concentration carried out by SSRT. The fracture morphologies of the steels after hydrogen charging present ductile dimple and quasi-cleavage characteristic. 展开更多
关键词 0Cr16Ni5Mo steel hydrogen diffusion hydrogen permeation thermal desorption spectroscopy slow strain rate test
原文传递
Relationship between Hydrogen Diffusion and Blistering Nucleation and Growth
15
作者 Jin-xu LI Hang YIN +5 位作者 Xi-na YANG Qian LI Ping ZHANG Chun-qian XIE Yan-jing SU Li-jie QIAO 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第11期1188-1194,共7页
The formation condition of hydrogen blister in 18Ni maraging steel without any inner or external stress was investigated. The results show that the critical diffusible hydrogen concentration of a blister forming is ab... The formation condition of hydrogen blister in 18Ni maraging steel without any inner or external stress was investigated. The results show that the critical diffusible hydrogen concentration of a blister forming is about 1.4×10^-5 , which is corresponding to the current density of 30 mA/cm^2 during cathodic charging in a sodium hydroxide solution. For a 0.1 cm thick sample, no matter the current density is equal to or much larger than the critical value, it spends at least about 132 h to form a hydrogen blister when hydrogen charging in single direction. It is approxi- mately equal to the time for hydrogen atom to diffuse throughout the sample, which exactly depends on the hydrogen diffusion coefficient and the penetration depth. The very first clear suggestion was reported that the incubation period for hydrogen blister nucleation was necessary. According to the Fick's laws, calculations show that the normalized hydrogen concentration in the escaping surface almost reaches 0.96 times of the charging surface, which means that the diffusion almost reaches a dynamic balance. A model was illustrated to describe the competitive relationship between hydrogen diffusion and blister formation. 展开更多
关键词 hydrogen blister TRAP maraging steel hydrogen diffusion incubation time
原文传递
Hydrogen Permeation and Diffusion in Amorphous Alloy Ni_(68)Cr7_Si_8B_(14)Fe_3 at Elevated Temperature
16
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第5期443-445,共3页
The behaviour of hydrogen permeation and diffusion in amorphous alloy Ni68Cr7Si8B14Fe3 hasbeen investigated by an ultrahigh vacuum gas permeation technique. A comparison experimentwas carried out between the as-quench... The behaviour of hydrogen permeation and diffusion in amorphous alloy Ni68Cr7Si8B14Fe3 hasbeen investigated by an ultrahigh vacuum gas permeation technique. A comparison experimentwas carried out between the as-quenched and annealed States (400℃/2h) of the amorphousalloy. The results show that, for both states of the amorphous alloy in the temperature rangeof 200~350℃, the diffusivity and permeability of hydrogen are in agreement with Arrheniusrelationship, there does not exist H-trapping effect, and the activation energies of diffusion andpermeation almost keep the same. 展开更多
关键词 Fe3 at Elevated Temperature SI Cr7Si8B hydrogen Permeation and diffusion in Amorphous Alloy Ni
下载PDF
Hydrogen Permeation and Diffusion in Low-carbon Steels and 16Mn Steel
17
作者 Jian XU and Xiukui SUN(State Key Lab. of RSA, Institute of Metal Research, Academia Sinica, Shenyang, 110015, China)Xiaozi YUAN and Baoming WEI (To whom correspondence should be addressed)(Dept. of Applied Chemistry, Nanjing Institute of Chemical Technol 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第2期92-96,共5页
In the present work. the hydrogen permeation and diffusion in two low-carbon steels. # 10 and #20. and 16Mn stee1 over the temperature range of 80 to 330℃ were investigated using gaseous permeation technique. The tem... In the present work. the hydrogen permeation and diffusion in two low-carbon steels. # 10 and #20. and 16Mn stee1 over the temperature range of 80 to 330℃ were investigated using gaseous permeation technique. The temperature dependence of hydrogen permeability. diffusivity and solubility for the three steels was obtained in the form of the Arrhenius equations. It was shown that the hydrogen permeability of the 16Mn steel is somewhat lower than that of the two low-carbon steels.whereas the hydrogen diffusivity is lowered in the order of #10, #20 and 16Mn but the activation energy of diffusion is much the same for the three steels. The difference in the diffusivity was attributed to the increase of ferrite-cementite interface areas with the refinement of pearlitic structure in the steels 展开更多
关键词 MN hydrogen Permeation and diffusion in Low-carbon Steels and 16Mn Steel
下载PDF
Diffusion of Hydrogen along the Grain Boundaries in Ni_3Al Alloys
18
作者 Xiaoying CHENG and Xiaojing WAN Institute of Materials Research, Shanghai University, Shanghai 200072, China Qiuyun WU and Xiukui SUN State Key Lab. for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期207-210,共4页
The diffusivity of hydrogen in two Ni3Al alloys (No.1 and No.2) has been measured in the temperature range of 100 degreesC to 420 degreesC using an ultrahigh vacuum gaseous permeation technique. The diffusivity data f... The diffusivity of hydrogen in two Ni3Al alloys (No.1 and No.2) has been measured in the temperature range of 100 degreesC to 420 degreesC using an ultrahigh vacuum gaseous permeation technique. The diffusivity data fall into two segments, in which the hydrogen diffusivity adheres to the Arrhenius form, respectively. From the hydrogen diffusivity, it is conjectured that the hydrogen diffusivity reflects the hydrogen transportation along the grain boundaries at lower temperature and the hydrogen transportation in the lattice at higher temperature. The intergranular fracture of Lit-type intermetallics induced by hydrogen at relative low temperature results from hydrogen transportation along the grain boundaries and not in the lattice. 展开更多
关键词 diffusion of hydrogen along the Grain Boundaries in Ni3Al Alloys Al NI
下载PDF
Electrochemical hydrogen storage properties of non-equilibrium Ti_(2-x)Mg_xNi alloys 被引量:1
19
作者 李佳佳 周俊凤 +3 位作者 赵相玉 杨猛 马立群 沈晓冬 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3729-3735,共7页
Amorphous Ti2?xMgxNi (x=0?0.3) alloys were prepared by mechanical milling of elemental powders. Charge and discharge test, linear polarization (LP) and potential-step measurement were carried out to investigate the el... Amorphous Ti2?xMgxNi (x=0?0.3) alloys were prepared by mechanical milling of elemental powders. Charge and discharge test, linear polarization (LP) and potential-step measurement were carried out to investigate the electrochemical hydrogen storage properties of the alloys before and after heat treatment. The results show that the maximum discharge capacity of heat-treated Ti2?xMgxNi alloy can reach 275.3 mA·h/g, which is 100 mA·h/g higher than that of the amorphous Ti2?xMgxNi alloy. The heat-treated Ti1.9Mg0.1Ni alloy presents the best cycling stability with a high discharge capacity of 210 mA·h/g after 30 cycles. The results of LP and potential-step measurement of the Ti1.9Mg0.1Ni alloy show that the exchange current density increases from 101.1 to 203.3 mA/g and the hydrogen diffusion coefficient increases from 3.20×10?11 to 2.70×10?10 cm2/s after the heat treatment, indicating that the heat treatment facilitates both the charge-transfer and hydrogen diffusion processes, resulting in an improvement in electrochemical hydrogen storage properties of Ti2?xMgxNi (x=0?0.3) alloys. 展开更多
关键词 Ti2-xMgxNi alloy AMORPHOUS heat treatment exchange current density hydrogen diffusion coefficient
下载PDF
Hydrogen embrittlement of X80 pipeline steel in H2S environment: Effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging–releasing–recharging cycles 被引量:8
20
作者 Peng-peng Bai Jie Zhou +3 位作者 Bing-wei Luo Shu-qi Zheng Peng-yan Wang Yu Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第1期63-73,共11页
This study investigated the susceptibility of X80 pipeline steel to hydrogen embrittlement given different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles in H2S environment.The fractur... This study investigated the susceptibility of X80 pipeline steel to hydrogen embrittlement given different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles in H2S environment.The fracture strain of the steel samples decreased with increasing hydrogen pre-charging time;this steel degradation could almost be recovered after diffusible hydrogen was removed when the hydrogen pre-charging time was<8 d.However,unrecoverable degeneration occurred when the hydrogen pre-charging time extended to 16–30 d.Moreover,nanovoid formation meant that the hydrogen damage to the steel under intermittent hydrogen pre-charging–releasing–recharging conditions was more serious than that under continuous hydrogen pre-charging conditions.This study illustrated that the mechanical degradation of steel is inevitable in an H2S environment even if diffusible hydrogen is removed or visible hydrogen-induced cracking is neglected.Furthermore,the steel samples showed premature fractures and exhibited a hydrogen fatigue effect because the repeated entry and release of diffusible hydrogen promoted the formation of vacancies that aggregated into nanovoids.Our results provide valuable information on the mechanical degradation of steel in an H2S environment,regarding the change rules of steel mechanical properties under different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles. 展开更多
关键词 high-strength steel hydrogen embrittlement corrosion hydrogen diffusion
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部