期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
NO_x emission characteristics of hydrogen internal combustion engine 被引量:1
1
作者 孙柏刚 段俊法 刘福水 《Journal of Beijing Institute of Technology》 EI CAS 2014年第3期332-338,共7页
To study the economic advantages of hydrogen internal combustion engine, an experimen- tal study was carried out using a 2.0 L port fuel-injected (PFI) hydrogen internal combustion engine. Influences of fuel-air equ... To study the economic advantages of hydrogen internal combustion engine, an experimen- tal study was carried out using a 2.0 L port fuel-injected (PFI) hydrogen internal combustion engine. Influences of fuel-air equivalence ratio φ, speed, and ignition advance angle on heat efficiency were determined. Test results showed that indicated thermal efficiency ( ITE ) firstly increased with fuel- air equivalence ratio, achieved the maximum value of 40. 4% ( φ = 0.3 ), and then decreased when was more than 0. 3. ITE increased as speed rises. Mechanical efficiency increased as fuel-air equiva- lence ratio increased, whereas mechanical efficiency decreased as speed increased, with maximum mechanical efficiency reaching 90%. Brake thermal efficiency (BTE) was influenced by ITE and me- chanical efficiency, at the maximum value of 35% (φ =0.5, 2 000 r/min). The optimal ignition ad- vance angle of each condition resulting in the maximum BTE was also studied. With increasing fuel- air equivalence ratio, the optimal ignition angle became closer to the top dead center ( TDC ). The test results and the conclusions exhibited a guiding role on hydrogen internal combustion engine opti- mization. 展开更多
关键词 hydrogen internal combustion engine thermal efficiency fuel-air equivalence ratio SPEED ignition advance angle
下载PDF
Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: Employing catalyzed stainless steel mesh cathode
2
作者 Kiros Hagos Chang Liu Xiaohua Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期574-582,共9页
Improving the production of methane, while maintaining a significant level of process stability, is the main challenge in the anaerobic digestion process. Recently, microbial electrolysis cell(MEC) has become a promis... Improving the production of methane, while maintaining a significant level of process stability, is the main challenge in the anaerobic digestion process. Recently, microbial electrolysis cell(MEC) has become a promising method for CO_2 reduction produced during anaerobic digestion(AD) and leads to minimize the cost of biogas upgrading technology. In this study, the MEC-AD coupled reactor was used to generate and utilize the endogenous hydrogen by employing biocompatible electrodeposited cobalt-phosphate as catalysts to improve the performance of stainless steel mesh and carbon cloth electrodes. In addition, the modified version of ADM1 model(ADM1 da) was used to simulate the process. The result indicated that the MEC-AD coupled reactor can improve the CH_4 yield and production rate significantly. The CH_4 yield was enhanced with an average of 48% higher than the control. The CH_4 production rate was also increased 1.65 times due to the utilization of endogenous hydrogen.The specific yield, flow rate, content of CH_4, and p H value were the variables that the model was best at predicting(with indexes of agreement: 0.960/0.941, 0.682/0.696, 0.881/0.865, and 0.764/0.743) of the process with SSmeshes 80/SS-meshes 200, respectively. Employing the catalyzed SS mesh cathode, in the MEC-AD coupled reactor, could be an effective approach to generate and facilitate the utilization of endogenous hydrogen in anaerobic digestion of CH_4 production technology, which is a promising and feasible method to scale up to the industrial level. 展开更多
关键词 Biochemical engineering methane Mathematical modeling Endogenous hydrogen Stainless steel cathode Microbial electrolysis
下载PDF
Overview of Past, Present and Future Marine Power Plants 被引量:6
3
作者 M.Morsy EI-Gohary 《Journal of Marine Science and Application》 2013年第2期219-227,共9页
In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent n... In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent need for energy sources that provide sustainable, safe and economic supplies for the world is imperative. The current fossil fuel energy system must be improved to ensure a better and cleaner transportation future for the world. Despite the fact that the marine transportation sector consumes only 5% of global petroleum production; it is responsible for 15% of the world NOx and SOx emissions. These figures must be the engine that powers the scientific research worldwide to develop new solutions for a very old energy problem. In this paper, the most effective types of marine power plants were discussed. The history of the development of each type was presented first and the technical aspects were discussed second. Also, the fuel ceils as a new type of power plants used in marine sector were briefed to give a complete overview of the past, present and future of the marine power plants development. Based on the increased worldwide concerns regarding harmful emissions, many researchers have introduced solutions to this problem, including the adoption of new cleaner fuels. This paper was guided using the same trend and by implementing the hydrogen as fuel for marine internal combustion engine, gas turbines, and fuel cells. 展开更多
关键词 marine power plants alternative fuels gas turbines diesel engines hydrogen engines fuel cells hydrogen fuel
下载PDF
Bio-inspired high-efficiency photosystem by synergistic effects of core-shell structured Au@CdS nanoparticles and their engineered location on{001}facets of SrTiO_(3)nanocrystals
4
作者 Wenxuan Wang Wenhao Chi +7 位作者 Zhaoyong Zou Pengchao Zhang Kun Wang Ji Zou Hang Ping Jingjing Xie Weimin Wang Zhengyi Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第5期159-168,共10页
Natural photosynthesis,which provides a green and high-efficiency energy conversion path by spatial separation of photogenerated carriers through combined actions of molecules ingeniously arranged in an efficient sola... Natural photosynthesis,which provides a green and high-efficiency energy conversion path by spatial separation of photogenerated carriers through combined actions of molecules ingeniously arranged in an efficient solar nanospace,highlights the importance of rational nanostructure design to realize artificial high-efficiency photosystem.Inspired by these unique features,we constructed a high-efficiency ternary photosystem by selectively decorating the{001}facets of 18-facet SrTiO_(3)with Au@CdS photosensitizers via a green photo-assisted method.Benefiting from the dual-facilitated charge carriers transportation in core-shell structured Au@CdS heterojunction and well-faceted 18-facet SrTiO_(3)nanocrystal,such a photo-catalyst could realize the effective spatial separation of photogenerated electrons and holes.As expected,the 18-facet SrTiO_(3)/Au@CdS photocatalyst exhibits superior activity in visible-light-driven photocatalytic hydrogen evolution(4.61 mmol h^(−1)g^(−1)),166%improvement in comparison with randomly deposited Au@CdS(1.73 mmol h^(−1)g^(−1)).This work offers new insight into the development of green and high-efficiency photocatalytic systems based on the rational nanostructure design by crystal facet engineering. 展开更多
关键词 Au@CdS composites CORE-SHELL 18-facet SrTiO_(3) Photogenerated carrier separation Crystal facet engineering hydrogen production
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部