期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Solution-based Synthesis of Ni Sb Nanoparticles for Electrochemical Activity in Hydrogen Evolution Reaction
1
作者 Yin-yin Qian Jing Yang +2 位作者 Huan-ran Li Shi-qi Xing Qing Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第3期373-378,I0002,I0016-I0017,共9页
A cost-effective,facile solution-based hot-injection synthetic route has been developed to synthesize NiSb nanoparticles in oleylamine(OAm)using commercially available inexpensive precursor with reducing toxicity at a... A cost-effective,facile solution-based hot-injection synthetic route has been developed to synthesize NiSb nanoparticles in oleylamine(OAm)using commercially available inexpensive precursor with reducing toxicity at a relatively low temperature of 160℃.Especially,an organic reductant of borane-tert-butylamine complex is intentionally involved in the reaction system to promote a fast reduction of metallic Ni and Sb for the formation of the NiSb nanoparticles.Structural characterizations reveal that the NiSb nanoparticles are hexagonal phase with space group P63/mmc and they are composed of small granules with size about 10 nm that tend to form agglomerates with porous-like geometries.This is the first report on the generation of transition metal antimonide via solution-based strategy,and the asfabricated nanoparticles possess actively electrocatalytic hydrogen evolution reaction(HER)property in acidic electrolytes when the long-chain ligand of OAm adhered on the surface of the nanoparticles is exchanged by ligand-removal and exchange procedure.It is found that the NiSb nanoparticles as a new kind of non-noble-metal HER electrocatalysts only require overpotentials of 437 and 531 mV to achieve high current densities of 10 and 50 mA/cm^2 respectively,as well as exhibit low charge transfer resistance and excellent HER stability. 展开更多
关键词 Hot-injection synthetic route NiSb nanoparticles Ligand-removal and exchange hydrogen evolution reaction activity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部