Two-dimensional self-assemblies of four partially fluorinated molecules, 1,4-bis(2,6-difluoropyridin-4-yl)benzene, 4,4'-bis(2,6-difluoropyridin-4-yl)-1,1'-biphenyl, 4,4'-bis(2,6-difluoropyridin-4-yl)-1,1':4...Two-dimensional self-assemblies of four partially fluorinated molecules, 1,4-bis(2,6-difluoropyridin-4-yl)benzene, 4,4'-bis(2,6-difluoropyridin-4-yl)-1,1'-biphenyl, 4,4'-bis(2,6-difluoropyridin-4-yl)-1,1':4',1'-terphenyl and 4,4'-bis(2,6-difluoropyridin-3-yl)-1,1'-biphenyl, involving weak intermolecular C-H···F and C-H···N hydrogen bonds were systematically investigated on Au(111) with low-temperature scanning tunneling microscopy. The inter-molecular connecting modes and binding sites were closely related to the backbones of the building blocks, i.e., the molecule length determines its binding sites with neighboring molecules in the assemblies while the attaching positions of the N and F atoms dictate its approaching and docking angles. The experimental results demonstrate that multiple weak hydrogen bonds such as C-H···F and C-H···N can be efficiently applied to tune the molecular orientations and the self-assembly structures accordingly.展开更多
基金supported by NSFC(Nos.21333001,21133001,21261130090),ChinaNRF CREATE-SPURc project(No.R-143-001-205-592),Singapore
文摘Two-dimensional self-assemblies of four partially fluorinated molecules, 1,4-bis(2,6-difluoropyridin-4-yl)benzene, 4,4'-bis(2,6-difluoropyridin-4-yl)-1,1'-biphenyl, 4,4'-bis(2,6-difluoropyridin-4-yl)-1,1':4',1'-terphenyl and 4,4'-bis(2,6-difluoropyridin-3-yl)-1,1'-biphenyl, involving weak intermolecular C-H···F and C-H···N hydrogen bonds were systematically investigated on Au(111) with low-temperature scanning tunneling microscopy. The inter-molecular connecting modes and binding sites were closely related to the backbones of the building blocks, i.e., the molecule length determines its binding sites with neighboring molecules in the assemblies while the attaching positions of the N and F atoms dictate its approaching and docking angles. The experimental results demonstrate that multiple weak hydrogen bonds such as C-H···F and C-H···N can be efficiently applied to tune the molecular orientations and the self-assembly structures accordingly.