期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Understanding surface charge effects in electrocatalysis.Part 2:Hydrogen peroxide reactions at platinum
1
作者 Jun Huang Victor Climent +1 位作者 Axel Groß Juan M.Feliu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第11期2837-2849,共13页
Electrocatalytic activity is influenced by the surface charge on the solid catalyst.Conventionally,our attention has been focused on how the surface charge shapes the electric potential and concentration of ionic reac... Electrocatalytic activity is influenced by the surface charge on the solid catalyst.Conventionally,our attention has been focused on how the surface charge shapes the electric potential and concentration of ionic reactant(s)in the local reaction zone.Taking H_(2)O_(2)redox reactions at Pt(111)as a model system,we reveal a peculiar surface charge effect using ab initio molecular dynamics simulations of electrified Pt(111)-water interfaces.In this scenario,the negative surface charge on Pt(111)repels the O-O bond of the reactant(H_(2)O_(2))farther away from the electrode surface.This leads to a higher activation barrier for breaking the O-O bond.Incorporating this microscopic mechanism into a microkinetic-double-layer model,we are able to semi-quantitatively interpret the pH-dependent activity of H_(2)O_(2)redox reactions at Pt(111),especially the anomalously suppressed activity of H_(2)O_(2)reduction with decreasing electrode potential.The relevance of the present surface charge effect is also examined in wider scenarios with different electrolyte cations,solution pHs,crystal facets of the catalyst,and model parameters.In contrast with previous mechanisms focusing on how surface charge influences the local reaction condition at a fixed reaction plane,the present work gives an example in which the location of the reaction plane is adjusted by the surface charge. 展开更多
关键词 ELECTROCATALYSIS Surface charge effect hydrogen peroxide reaction Pt(111)-aqueous solution interface Microkinetic-double-layer model
下载PDF
Amine axial ligand-coordinated cobalt phthalocyanine-based catalyst for flow-type membraneless hydrogen peroxide fuel cell or enzymatic biofuel cell
2
作者 Heeyeon An Hyewon Jeon +2 位作者 Jungyeon Ji Yongchai Kwon Yongjin Chung 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期463-471,共9页
In this study,an amine-coordinated cobalt phthalocyanine(CoPc)-based anodic catalyst was fabricated by a facile process,to enhance the performance of hydrogen peroxide fuel cells(HPFCs) and enzymatic biofuel cells(EBC... In this study,an amine-coordinated cobalt phthalocyanine(CoPc)-based anodic catalyst was fabricated by a facile process,to enhance the performance of hydrogen peroxide fuel cells(HPFCs) and enzymatic biofuel cells(EBCs).For this purpose,polyethyleneimine(PEI) was added onto the reduced graphene oxide and CoPc composite(RGO/CoPc) to create abundant NH2 axial ligand groups,for anchoring the Co core within the CoPc.Owing to the PEI addition,the onset potential of the hydrogen peroxide oxidation reaction was shifted by 0.13 V in the negative direction(0.02 V) and the current density was improved by 1.92 times(1.297 mA cm^(-2)),compared to those for RGO/CoPc(0.15 V and 0.676 mA cm^(-2),respectively),due to the formation of donor-acceptor dyads and the prevention of CoPc from leaching out.The biocatalyst using glucose oxidase(GOx)([RGO/CoPc]/PEI/GOx) showed a better onset potential and catalytic activity(0.15 V and 318.7 μA cm^(-2)) than comparable structures,as well as significantly improved operational durability and long-term stability.This is also attributed to PEI,which created a favorable microenvironment for the enzyme.The maximum power densities(MPDs) and open-circuit voltages(OCVs) obtained for HPFCs and EBCs using the suggested catalyst were 105.2±1.3 μW cm^(-2)(0.317±0.003 V) and 25.4±0.9 μW cm^(-2)(0.283±0.007 V),respectively.This shows that the amine axial ligand effectively improves the performance of the actual driving HPFCs and EBCs. 展开更多
关键词 hydrogen peroxide fuel cell Enzymatic biofuel cell Amine axial ligand hydrogen peroxide oxidation reaction MEMBRANELESS
下载PDF
The dual role of hydrogen peroxide in fuel cells 被引量:3
3
作者 安亮 赵天寿 +2 位作者 闫晓晖 周学龙 谈鹏 《Science Bulletin》 SCIE EI CAS CSCD 2015年第1期55-64,共10页
Clean and highly efficient energy production has long been sought after, as a way to solve global energy and environmental problems. Fuel cells, which convert the chemical energy stored in fuel directly into electrici... Clean and highly efficient energy production has long been sought after, as a way to solve global energy and environmental problems. Fuel cells, which convert the chemical energy stored in fuel directly into electricity, are expected to be a key enabling technology for the pressing energy issues that plague our planet. Fuel cells require oxygen as an oxidant and require oxygen tank containers when used in air-free environments such as outer space and underwater. Hydrogen peroxide has been extensively uti- lized as an alternative liquid oxidant in place of gaseous oxygen. In addition to being an oxidant, hydrogen peroxide can donate electrons in the oxidation reaction to act as a fuel. This article provides an overview of the dual role of hydrogen peroxide in fuel-cell applications, including working principle, system design, and cell performance. Recent innovations and future perspectives of fuel cells that use hydrogen peroxide are particularly emphasized. 展开更多
关键词 Fuel cell hydrogen peroxide Mixedpotential hydrogen peroxide reduction reaction hydrogen peroxide oxidation reaction PERFORMANCE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部