Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and wa...Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July.展开更多
Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to invest...Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to investigate the root water uptake mechanisms of winter wheat (Triticum aesfivum L.) under different irrigation depths in the North China Plain. Both direct inference approach and multisource linear mixing model were applied to estimate the distribution of water uptake with depth in six growing stages. Results showed that winter wheat under land surface irrigation treatment (Ts) mainly absorbed water from 10-20 cm soil layers in the wintering and green stages (66.9 and 72.0%, respectively); 0-20 cm (57.0%) in the jointing stage; 0-40 (15.3%) and 80-180 cm (58.1%) in the heading stage; 60-80 (13.2%) and 180-220 cm (35.5%) in the filling stage; and 0-40 (46.8%) and 80-100 cm (31.0%) in the ripening stage. Winter wheat under whole soil layers irrigation treatment (Tw) absorbed more water from deep soil layer than Ts in heading, filling and ripening stages. Moreover, root cell activity and root length density of winter wheat under TW were significantly greater than that of Ts in the three stages. We concluded that distribution of water uptake with depth was affected by the availability of water sources, the root length density and root cell activity. Implementation of the whole soil layers irrigation method can affect root system distribution and thereby increase water use from deeper soil and enhance water use efficiency.展开更多
In order to investigate the transformation among the precipitation,groundwater,and surface water in the Sanjiang Plain,Northeast China,precipitation and groundwater samples which were collected at the meteorological s...In order to investigate the transformation among the precipitation,groundwater,and surface water in the Sanjiang Plain,Northeast China,precipitation and groundwater samples which were collected at the meteorological station of the Sanjiang Mire Wetland Experimental Station,Chinese Academy of Sciences and the surface water which collected from the Wolulan River were used to identify the transformation of three types of water.The isotope composition of different kinds of water sources were analyzed via stable isotope(deuterium and oxygen-18) investigation of natural water.The results show a clear seasonal difference in the stable isotopes in precipitation.During the cold half-year,the mean stable isotope in precipitation in the Sanjiang Plain reaches its minimum with the minimum temperature.The δ18O and δD values are high in the rainy season.In the Wolulan River,the evaporation is the highest in August and September.The volume of evaporation and the replenishment to the river is mostly same.The groundwater is recharged more by the direct infiltration of precipitation than by the river flow.The results of this study indicate that the water bodies in the Sanjiang Plain have close hydrologic relationships,and that the transformation among each water system frequently occurs.展开更多
The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually character...The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually characterized by different isotopic signatures (18O/16O and D/H ratios).Because there are relative abundance variations in water,and plant roots do not discriminate against specific water isotopes during water uptake,hydrogen and oxygen stable isotope ratios of water within plants provide new information on water sources,interactions between plant species and water use patterns under natural conditions.At present,the measurement of δD,δ18O composition of various potential water sources and stem water has become significant means to identify plant water sources.Based on previous studies,this review highlights recent advances such as theory basis,methodology,as well as different spatial and temporal scales,and existed questions and prospects.Stable isotope techniques for estimating plant water sources have provided valuable tools for conducting basic and applied research.Future studies emphasize the modification of preparing methods,isotope technique combined with other measurements,and aerial organs of plant water source should be en-couraged.展开更多
Studying spatial and temporal characteristics of regional groundwater recharge will guide the scientific management and sustainable development of regional water resources.This study investigated stable isotopes(δ^(1...Studying spatial and temporal characteristics of regional groundwater recharge will guide the scientific management and sustainable development of regional water resources.This study investigated stable isotopes(δ^(18)O and δ^(2) H)of precipitation,groundwater,river water and lake water during 2019-2020 in Qinghai Lake Basin to reveal the spatial and temporal characteristics of groundwater recharge.The local meteoric water line was simulated using ordinary least squares regression(δ^(2) H=7.80δ^(18)O+10.60).The local evaporation lines of the river water,lake water and groundwater were simulated asδ^(2) H=6.21δ^(18)O-0.72,δ^(2) H=5.73δ0-3.60 and δ^(2) H=6.59δ0+1.76,respectively.The δ^(2) H and δ^(18)O of river water and groundwater were in more depleted values due to the recharge by precipitation at high altitudes or precipitation effects,and theδ^(2) H andδ^(18)O of the lake water were in more enriched values because of evaporation.The relationship between the δ^(2) H and δ^(18)O of groundwater and river water was not significantly different,indicating a strong hydrological connection between the groundwater and river water surrounding Qinghai Lake.Additionally,the maximum values of δ^(18)O and the minimum values of lc-excess of groundwater in most regions were both in August,and the minimum values of δ^(18)O and the maximum values of lc-excess of groundwater in most regions were both in October.Therefore,the groundwater was recharged by soil water with strong evaporation in August and recharged by precipitation at high altitudes in October.The recharge rate of groundwater was relatively fast in areas with large slopes and large hydraulic gradients(e.g.,south of Qinghai Lake),and in areas with strong hydrological connections between the groundwater and river water(e.g.,the Buha River Valley).Those results can provide data support for protection and utilization of water resources in Qinghai Lake Basin,and provide reference for groundwater research in closed lake basins on the Qinghai-Tibet Plateau.展开更多
We present here a pilot study to examine trophic level effects and migration patterns at the middle Shang Dynasty site of Xiaoshuangqiao in Henan Province using δD results combined with δ^13C and δ^15N values. A to...We present here a pilot study to examine trophic level effects and migration patterns at the middle Shang Dynasty site of Xiaoshuangqiao in Henan Province using δD results combined with δ^13C and δ^15N values. A total of 33 specimens(17 humans, 7 cattle, 5 pigs, 3 sheep, 1 dog) of bone collagen were isotopically analyzed for δ^13C, δ^15N, and dD values. A strong positive correlation(R^2 = 0.94)between mean δ^15N and δD values of herbivores(cattle and sheep), omnivores(pig), carnivores(dog)and humans was observed. The δD results were found to increase by -10‰ to 20‰ from herbivores to omnivores to carnivorous, evidence that collagen δD results are a useful indicator for the study of trophic levels and dietary patterns at archaeological sites. The δD results were also used to examine the origins of two different groups of individuals buried at Xiaoshuangqiao. Individuals buried in sacrificial pits of district V had mean δD values(-47.0 ± 2.9‰, n = 11) that were significantly(p =0.049) elevated compared to the people buried in the stratigraphy of district IX(-51.3 ± 3.3‰, n = 3),indicating that they were ingesting water from different locations. In addition, the D values of the people buried in the stratigraphy were similar to the pigs(-54.5 ± 4.2‰, n = 5) at Xiaoshuangqiao,suggesting that they were most probably of the local population, and that the individuals buried in the sacrificial pits were most possibly from the coast and prisoners of the Dongyi(“东夷”)people. Thus,δD results have the potential to examine human origins and migration patterns and should be increasingly used in conjunction with δ^13C and δ^15N values at archaeological sites.展开更多
In order to investigate the isotopic and chemical characteristics of lagoon waters in Niigata Prefecture in recent years, oxygen and hydrogen stable isotope ratios (i.e., 8180 and 6D), the concentrations of DOC (di...In order to investigate the isotopic and chemical characteristics of lagoon waters in Niigata Prefecture in recent years, oxygen and hydrogen stable isotope ratios (i.e., 8180 and 6D), the concentrations of DOC (dissolved organic carbon), DO (dissolved oxygen) and pH, etc. in water samples of Sakata and Toyanogata were measured. Samples were generally taken monthly at the fixed sampling points from these lagoons. Consequently, the following matters have been mainly clarified: (1) ~D value of water samples in Sakata was generally larger than that in Toyanogata similarly to the case of ~180, though remarkable large difference among samples was not found; (2) the pH value of lagoon water samples is almost 6.5-8.5 (which is generally larger than that of river water), and pH at the spot of SI (downstream point of Lower Lagoon (Shitakata)) is remarkably high (9.0-9.5); (3) Lagoon water has the chemical characteristics contrasting to groundwater with a focus on river water from the viewpoint of pH (acidity or alkalinity) and DO. These matters can be closely related to the biological activity such as photosynthesis due to aquatic plant and phytoplankton and the activity of Crustacea plankton etc. in lagoon.展开更多
Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are use...Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are used to study the recharge water sources of those ecosystems. IsoSource software is used to determine the δ180 values for root water of Populous euphratica and Tamarix ramosissima in the riparian forest ecosystem, Haloxylon ammodendron in the artificial shrub forest, and Reaumuria soongorica in the Gobi, as well as for local soil water and groundwater, and precipitation in the upper reaches of the Heihe River Basin. Our results showed that soil water and shallow groundwater of the riparian forest and the artificial shrub forest were recharged by river water which originated from precipitation in the upper reaches, and strong evaporation occurred in the artificial shrub forest. Soil water of the Gobi was not affected by Heihe River water due to this area being far away from the river channel. The main water sources of Populous euphratica were from 40-60-cm soil water and groundwater, and of Tamarix ramosissima were from 40-80-cm soil water in the riparian forest ecosystem. In the artificial forest, Haloxylon ammodendron used 200-cm saturated-layer soil water and shallow groundwater. The Reaumuria soongorica mainly used soil water from the 175-200-cm depth in the Gobi. Therefore, soil water and groundwater are the main water sources which maintain survival and growth of the plants in the extremely arid regions of the lower reaches of the Heihe River Basin.展开更多
[Objectives]To study the relationship between soil water,groundwater burial depth,and precipitation for summer maize in Huaibei Plain.[Methods]The atmospheric precipitation,soil water and groundwater for the growth pe...[Objectives]To study the relationship between soil water,groundwater burial depth,and precipitation for summer maize in Huaibei Plain.[Methods]The atmospheric precipitation,soil water and groundwater for the growth period of summer maize in Huaibei Plain were analyzed using the 26-year long series of data from the Wudaogou Hydrological Experimental Station,combined with the hydrogen and oxygen stable isotope tracing method.[Results]The average soil moisture content of summer maize in different growth periods showed a trend of first decreasing,then increasing and then decreasing with the increase of soil depth.The average soil moisture content was the lowest at the surface soil layer.From the characteristic values of hydrogen and oxygen isotopes of atmospheric precipitation,soil water and groundwater,it can be known that the average values ofδ18O andδD of soil water decreased with the increase of soil depth,indicating that soil moisture evaporation leads to the enrichment of soil heavy isotopes,and the degree of enrichment decreased from the surface layer to the deep layer of the soil.The seasonal variation of the stable isotope of hydrogen and oxygen in soil water declined with the increase of soil depth.The soil water changes at 30 cm and 50 cm soil depths were the most obvious.The soil was easily recharged by precipitation,and soil evaporation was relatively strong.[Conclusions]The research results are favorable for in-depth understanding of the regional water cycle process,and are expected to provide a certain scientific basis for realizing the efficient and sustainable use of regional groundwater.展开更多
Stable hydrogen and oxygen isotope has important implication on water and mois- ture transportation tracing research. Based on stable hydrogen (6D) and oxygen (6180) isotope using a Picarro Ll102-i and water chemi...Stable hydrogen and oxygen isotope has important implication on water and mois- ture transportation tracing research. Based on stable hydrogen (6D) and oxygen (6180) isotope using a Picarro Ll102-i and water chemistry (e.g. major ions, pH, EC and TDS) meas- urement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry (e.g. TDS, pH, EC, Ca^2^, Mg2+, Na^+ and CI) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou g^acier basin during June 2012 to September 2013. Results showed that 6D and δ18O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of 6D and δ18O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably im- plied that the glacier runoff was mainly originated from glacier melting and precipitation supply The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO3-SO4 and Ca-Mg-HCO3-SO4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future.展开更多
Aims West Ordos Desert(WOD)in Inner Mongolia of China is charac-terized by unique geographical and ecological features to avoid the direct invasion of Quaternary Continental Glaciation,so it hosts many endangered reli...Aims West Ordos Desert(WOD)in Inner Mongolia of China is charac-terized by unique geographical and ecological features to avoid the direct invasion of Quaternary Continental Glaciation,so it hosts many endangered relic species such as Tetraena mongol-ica,Ammopiptanthus mongolicus and Potaninia mongolica from Tertiary.However,how these plants utilize available water sources remains unknown.The objective of this study was to investigate the water utilization strategies of selected rare and endangered plant species in WOD by comparing hydrogen isotope ratios between their xylem water and possible water sources following four rainfall events of varying-intensities.Methods We measured the hydrogen isotope ratios of xylem water from T.mongolica,A.mongolicus and P.mongolica and an accom-panying species Sarcozygium xanthoxylum and potential water sources(including precipitation and soil water in different soil layers from 0 to 150 cm)over 9 days following each of four varying-intensity rainfall events during the summer of 2012.And then calculated the percentage utilization of potential water sources by each species after each rainfall events using the linear mixing model.We also made the measurements of soil moisture and root biomass in favor of interpretation of plant water use strategies.Important Findings Tetraena mongolica,A.mongolicus and S.xanthoxylum primarily relied on deep soil water,whereas P.mongolica depended predomi-nantly on rainwater.These rare and endangered desert plants had differential utilizations of available water sources,so some com-petition for limited water existed among some species.Tetraena mongolica had a competitive relationship in absorption of soil moisture with the same family species S.xanthoxylum,suggesting that T.mongolica and S.xanthoxylum should be restored separately at different areas in the WOD.Overall,this study provides a better understanding of water use strategies of these four plants and scien-tific evidence for protecting rare and endangered plants,maintain-ing regional species diversity,and developing effective vegetation restoration plans in the WOD.展开更多
In arid and semi-arid environments,desert vegetation plays an important role in preventing soil erosion by wind and helps maintain the stability of desert and oasis ecosystems.Four types of typical desert vegetation,n...In arid and semi-arid environments,desert vegetation plays an important role in preventing soil erosion by wind and helps maintain the stability of desert and oasis ecosystems.Four types of typical desert vegetation,namely Populus euphratica,Haloxylon ammodendron,Nitraria sibirica,and Halostachs caspica,corresponding to different habitats(i.e.,river bank,sand dune,desert,and salt marsh)were chosen as the model vegetation in this research.Theδ^(2)H andδ^(18)O for rainwater,soil water,and plant water were applied to identify the water sources and quantify the proportions of different water sources used over the entire plant growth period(from March to October).The results showed that the precipitationδ^(2)H andδ^(18)O in the Ebinur Lake basin varied from-142.5‰to-0.6‰and from-20.16‰to 1.20‰,respectively.The largestδ^(2)H andδ^(18)O values occurred in summer and the smallest in winter.The soil waterδ^(2)H andδ^(18)O of the four habitats decreased gradually with increasing depth.Theδ^(2)H andδ^(18)O values of water extracted from the stems of the four plants had similar variation trends,that is,the maximum was observed in spring and the minimum in summer.Among the four plants,H.caspica had the highest stable isotopic values in the stem water,followed by N.sibirica,H.ammodendron,and P.euphratica.The water sources and utilization ratios of desert vegetation varied across different growth stages.Throughout the growing period,H.ammodendron mainly used groundwater,whereas the water source proportions used by N.sibirica varied greatly throughout the growing season.In spring,plants mainly relied on surface soil water,with a contribution rate of 80%-94%.However,in summer,the proportion of deep soil water used was 31%-36%;and in autumn,the proportion of middle soil water used was 33%-36%.H.caspica mainly relied on topsoil water in spring and autumn,and the proportion of soil water in the middle layer slightly increased to 20%-36%in summer.P.euphratica mainly used intermediate soil water in spring with a utilization rate of 53%-54%.In summer,groundwater was the main source,with a utilization rate of 72%-88%,and only 2%-5%came from river water,whereas in autumn,the river water utilization rate rose to 11%-21%.The results indicated that there were significant differences in water use sources during the growing period for desert vegetation in arid areas.This research provides a theoretical basis for understanding water use mechanisms,water adaptation strategies,and vegetation restoration and management in arid areas.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41761047,41861040 and 41861034).
文摘Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July.
基金supported by the National Natural Science Foundation of China(50979065,51109154 and 51249002)the Natural Science Foundation of Shanxi Province,China(2012021026-2)+2 种基金the Program for Science and Technology Development of Shanxi Province,China(20110311018-1)the Specialized Research Fund for the Doctoral Program of Higher Education,China(20111402120006,20121402110009)the Program for Graduate Student Education and Innovation of Shanxi Province,China(2015BY27)
文摘Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to investigate the root water uptake mechanisms of winter wheat (Triticum aesfivum L.) under different irrigation depths in the North China Plain. Both direct inference approach and multisource linear mixing model were applied to estimate the distribution of water uptake with depth in six growing stages. Results showed that winter wheat under land surface irrigation treatment (Ts) mainly absorbed water from 10-20 cm soil layers in the wintering and green stages (66.9 and 72.0%, respectively); 0-20 cm (57.0%) in the jointing stage; 0-40 (15.3%) and 80-180 cm (58.1%) in the heading stage; 60-80 (13.2%) and 180-220 cm (35.5%) in the filling stage; and 0-40 (46.8%) and 80-100 cm (31.0%) in the ripening stage. Winter wheat under whole soil layers irrigation treatment (Tw) absorbed more water from deep soil layer than Ts in heading, filling and ripening stages. Moreover, root cell activity and root length density of winter wheat under TW were significantly greater than that of Ts in the three stages. We concluded that distribution of water uptake with depth was affected by the availability of water sources, the root length density and root cell activity. Implementation of the whole soil layers irrigation method can affect root system distribution and thereby increase water use from deeper soil and enhance water use efficiency.
基金Under the auspices of Major Science and Technology Program for Water Pollution Control and Treatment(No.2012ZX07201004)National Natural Science Foundation of China(No.41101470)
文摘In order to investigate the transformation among the precipitation,groundwater,and surface water in the Sanjiang Plain,Northeast China,precipitation and groundwater samples which were collected at the meteorological station of the Sanjiang Mire Wetland Experimental Station,Chinese Academy of Sciences and the surface water which collected from the Wolulan River were used to identify the transformation of three types of water.The isotope composition of different kinds of water sources were analyzed via stable isotope(deuterium and oxygen-18) investigation of natural water.The results show a clear seasonal difference in the stable isotopes in precipitation.During the cold half-year,the mean stable isotope in precipitation in the Sanjiang Plain reaches its minimum with the minimum temperature.The δ18O and δD values are high in the rainy season.In the Wolulan River,the evaporation is the highest in August and September.The volume of evaporation and the replenishment to the river is mostly same.The groundwater is recharged more by the direct infiltration of precipitation than by the river flow.The results of this study indicate that the water bodies in the Sanjiang Plain have close hydrologic relationships,and that the transformation among each water system frequently occurs.
基金supported by the West Action Program of the Chinese Academy of Sciences (KZCX2-XB2-04-03)the West Light Foundation of West Doctor of the Chinese Academy of Sciences+1 种基金the China Postdoctoral Science Foundation (Grant No. 200801244 and 20070420135)the Talented Foundation for Young Scientists of Cold and Arid Regions Environmental and Engineering Research Institute (No. 510984911)
文摘The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually characterized by different isotopic signatures (18O/16O and D/H ratios).Because there are relative abundance variations in water,and plant roots do not discriminate against specific water isotopes during water uptake,hydrogen and oxygen stable isotope ratios of water within plants provide new information on water sources,interactions between plant species and water use patterns under natural conditions.At present,the measurement of δD,δ18O composition of various potential water sources and stem water has become significant means to identify plant water sources.Based on previous studies,this review highlights recent advances such as theory basis,methodology,as well as different spatial and temporal scales,and existed questions and prospects.Stable isotope techniques for estimating plant water sources have provided valuable tools for conducting basic and applied research.Future studies emphasize the modification of preparing methods,isotope technique combined with other measurements,and aerial organs of plant water source should be en-couraged.
基金funded by the National Natural Science Foundation of China(41730854,41877157,42177236)。
文摘Studying spatial and temporal characteristics of regional groundwater recharge will guide the scientific management and sustainable development of regional water resources.This study investigated stable isotopes(δ^(18)O and δ^(2) H)of precipitation,groundwater,river water and lake water during 2019-2020 in Qinghai Lake Basin to reveal the spatial and temporal characteristics of groundwater recharge.The local meteoric water line was simulated using ordinary least squares regression(δ^(2) H=7.80δ^(18)O+10.60).The local evaporation lines of the river water,lake water and groundwater were simulated asδ^(2) H=6.21δ^(18)O-0.72,δ^(2) H=5.73δ0-3.60 and δ^(2) H=6.59δ0+1.76,respectively.The δ^(2) H and δ^(18)O of river water and groundwater were in more depleted values due to the recharge by precipitation at high altitudes or precipitation effects,and theδ^(2) H andδ^(18)O of the lake water were in more enriched values because of evaporation.The relationship between the δ^(2) H and δ^(18)O of groundwater and river water was not significantly different,indicating a strong hydrological connection between the groundwater and river water surrounding Qinghai Lake.Additionally,the maximum values of δ^(18)O and the minimum values of lc-excess of groundwater in most regions were both in August,and the minimum values of δ^(18)O and the maximum values of lc-excess of groundwater in most regions were both in October.Therefore,the groundwater was recharged by soil water with strong evaporation in August and recharged by precipitation at high altitudes in October.The recharge rate of groundwater was relatively fast in areas with large slopes and large hydraulic gradients(e.g.,south of Qinghai Lake),and in areas with strong hydrological connections between the groundwater and river water(e.g.,the Buha River Valley).Those results can provide data support for protection and utilization of water resources in Qinghai Lake Basin,and provide reference for groundwater research in closed lake basins on the Qinghai-Tibet Plateau.
基金supported by the National Natural Science Foundation of China(Grant No.41603009)MOE(Ministry of Education in China) Project of Humanities and Social Sciences(No.16YJCZH100)+1 种基金Origin of Chinese Civilisation and Mount Songshan Civilisation Zhengzhou Research Association(No.Q2015-1)Humanities and Social Science Research Foundation of Jiangsu Normal University(No.15XWR025)
文摘We present here a pilot study to examine trophic level effects and migration patterns at the middle Shang Dynasty site of Xiaoshuangqiao in Henan Province using δD results combined with δ^13C and δ^15N values. A total of 33 specimens(17 humans, 7 cattle, 5 pigs, 3 sheep, 1 dog) of bone collagen were isotopically analyzed for δ^13C, δ^15N, and dD values. A strong positive correlation(R^2 = 0.94)between mean δ^15N and δD values of herbivores(cattle and sheep), omnivores(pig), carnivores(dog)and humans was observed. The δD results were found to increase by -10‰ to 20‰ from herbivores to omnivores to carnivorous, evidence that collagen δD results are a useful indicator for the study of trophic levels and dietary patterns at archaeological sites. The δD results were also used to examine the origins of two different groups of individuals buried at Xiaoshuangqiao. Individuals buried in sacrificial pits of district V had mean δD values(-47.0 ± 2.9‰, n = 11) that were significantly(p =0.049) elevated compared to the people buried in the stratigraphy of district IX(-51.3 ± 3.3‰, n = 3),indicating that they were ingesting water from different locations. In addition, the D values of the people buried in the stratigraphy were similar to the pigs(-54.5 ± 4.2‰, n = 5) at Xiaoshuangqiao,suggesting that they were most probably of the local population, and that the individuals buried in the sacrificial pits were most possibly from the coast and prisoners of the Dongyi(“东夷”)people. Thus,δD results have the potential to examine human origins and migration patterns and should be increasingly used in conjunction with δ^13C and δ^15N values at archaeological sites.
文摘In order to investigate the isotopic and chemical characteristics of lagoon waters in Niigata Prefecture in recent years, oxygen and hydrogen stable isotope ratios (i.e., 8180 and 6D), the concentrations of DOC (dissolved organic carbon), DO (dissolved oxygen) and pH, etc. in water samples of Sakata and Toyanogata were measured. Samples were generally taken monthly at the fixed sampling points from these lagoons. Consequently, the following matters have been mainly clarified: (1) ~D value of water samples in Sakata was generally larger than that in Toyanogata similarly to the case of ~180, though remarkable large difference among samples was not found; (2) the pH value of lagoon water samples is almost 6.5-8.5 (which is generally larger than that of river water), and pH at the spot of SI (downstream point of Lower Lagoon (Shitakata)) is remarkably high (9.0-9.5); (3) Lagoon water has the chemical characteristics contrasting to groundwater with a focus on river water from the viewpoint of pH (acidity or alkalinity) and DO. These matters can be closely related to the biological activity such as photosynthesis due to aquatic plant and phytoplankton and the activity of Crustacea plankton etc. in lagoon.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91325102, 91025016 and 91125025)the National Science & Technology Support Project (No. 2011BAC07B05)
文摘Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are used to study the recharge water sources of those ecosystems. IsoSource software is used to determine the δ180 values for root water of Populous euphratica and Tamarix ramosissima in the riparian forest ecosystem, Haloxylon ammodendron in the artificial shrub forest, and Reaumuria soongorica in the Gobi, as well as for local soil water and groundwater, and precipitation in the upper reaches of the Heihe River Basin. Our results showed that soil water and shallow groundwater of the riparian forest and the artificial shrub forest were recharged by river water which originated from precipitation in the upper reaches, and strong evaporation occurred in the artificial shrub forest. Soil water of the Gobi was not affected by Heihe River water due to this area being far away from the river channel. The main water sources of Populous euphratica were from 40-60-cm soil water and groundwater, and of Tamarix ramosissima were from 40-80-cm soil water in the riparian forest ecosystem. In the artificial forest, Haloxylon ammodendron used 200-cm saturated-layer soil water and shallow groundwater. The Reaumuria soongorica mainly used soil water from the 175-200-cm depth in the Gobi. Therefore, soil water and groundwater are the main water sources which maintain survival and growth of the plants in the extremely arid regions of the lower reaches of the Heihe River Basin.
基金the Youth Science and Technology Innovation Fund of Water Resources Research Institute of Anhui Province and Huaihe River Commission,Ministry of Water Resources of China(KY201904).
文摘[Objectives]To study the relationship between soil water,groundwater burial depth,and precipitation for summer maize in Huaibei Plain.[Methods]The atmospheric precipitation,soil water and groundwater for the growth period of summer maize in Huaibei Plain were analyzed using the 26-year long series of data from the Wudaogou Hydrological Experimental Station,combined with the hydrogen and oxygen stable isotope tracing method.[Results]The average soil moisture content of summer maize in different growth periods showed a trend of first decreasing,then increasing and then decreasing with the increase of soil depth.The average soil moisture content was the lowest at the surface soil layer.From the characteristic values of hydrogen and oxygen isotopes of atmospheric precipitation,soil water and groundwater,it can be known that the average values ofδ18O andδD of soil water decreased with the increase of soil depth,indicating that soil moisture evaporation leads to the enrichment of soil heavy isotopes,and the degree of enrichment decreased from the surface layer to the deep layer of the soil.The seasonal variation of the stable isotope of hydrogen and oxygen in soil water declined with the increase of soil depth.The soil water changes at 30 cm and 50 cm soil depths were the most obvious.The soil was easily recharged by precipitation,and soil evaporation was relatively strong.[Conclusions]The research results are favorable for in-depth understanding of the regional water cycle process,and are expected to provide a certain scientific basis for realizing the efficient and sustainable use of regional groundwater.
基金National Natural Science Foundation of China,No.41301065The West Light Program for Talent Cultivation of Chinese Academy of Sciences
文摘Stable hydrogen and oxygen isotope has important implication on water and mois- ture transportation tracing research. Based on stable hydrogen (6D) and oxygen (6180) isotope using a Picarro Ll102-i and water chemistry (e.g. major ions, pH, EC and TDS) meas- urement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry (e.g. TDS, pH, EC, Ca^2^, Mg2+, Na^+ and CI) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou g^acier basin during June 2012 to September 2013. Results showed that 6D and δ18O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of 6D and δ18O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably im- plied that the glacier runoff was mainly originated from glacier melting and precipitation supply The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO3-SO4 and Ca-Mg-HCO3-SO4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future.
基金National Natural Science Foundation of China(31170661,31290223)Special Research Program for Public-Welfare Forestry(201504423)Agriculture Science Technology Achievement Transformation Fund(2013GB24320620).
文摘Aims West Ordos Desert(WOD)in Inner Mongolia of China is charac-terized by unique geographical and ecological features to avoid the direct invasion of Quaternary Continental Glaciation,so it hosts many endangered relic species such as Tetraena mongol-ica,Ammopiptanthus mongolicus and Potaninia mongolica from Tertiary.However,how these plants utilize available water sources remains unknown.The objective of this study was to investigate the water utilization strategies of selected rare and endangered plant species in WOD by comparing hydrogen isotope ratios between their xylem water and possible water sources following four rainfall events of varying-intensities.Methods We measured the hydrogen isotope ratios of xylem water from T.mongolica,A.mongolicus and P.mongolica and an accom-panying species Sarcozygium xanthoxylum and potential water sources(including precipitation and soil water in different soil layers from 0 to 150 cm)over 9 days following each of four varying-intensity rainfall events during the summer of 2012.And then calculated the percentage utilization of potential water sources by each species after each rainfall events using the linear mixing model.We also made the measurements of soil moisture and root biomass in favor of interpretation of plant water use strategies.Important Findings Tetraena mongolica,A.mongolicus and S.xanthoxylum primarily relied on deep soil water,whereas P.mongolica depended predomi-nantly on rainwater.These rare and endangered desert plants had differential utilizations of available water sources,so some com-petition for limited water existed among some species.Tetraena mongolica had a competitive relationship in absorption of soil moisture with the same family species S.xanthoxylum,suggesting that T.mongolica and S.xanthoxylum should be restored separately at different areas in the WOD.Overall,this study provides a better understanding of water use strategies of these four plants and scien-tific evidence for protecting rare and endangered plants,maintain-ing regional species diversity,and developing effective vegetation restoration plans in the WOD.
基金Natural Science Foundation of Xinjiang Uygur Autonomous Region,No.2021D01A118National Natural Science Foundation of China,No.U1803244Open Project of Xinjiang Laboratory of Lake Environment and Resources in Arid Area,No.XJNUSYS2019B18。
文摘In arid and semi-arid environments,desert vegetation plays an important role in preventing soil erosion by wind and helps maintain the stability of desert and oasis ecosystems.Four types of typical desert vegetation,namely Populus euphratica,Haloxylon ammodendron,Nitraria sibirica,and Halostachs caspica,corresponding to different habitats(i.e.,river bank,sand dune,desert,and salt marsh)were chosen as the model vegetation in this research.Theδ^(2)H andδ^(18)O for rainwater,soil water,and plant water were applied to identify the water sources and quantify the proportions of different water sources used over the entire plant growth period(from March to October).The results showed that the precipitationδ^(2)H andδ^(18)O in the Ebinur Lake basin varied from-142.5‰to-0.6‰and from-20.16‰to 1.20‰,respectively.The largestδ^(2)H andδ^(18)O values occurred in summer and the smallest in winter.The soil waterδ^(2)H andδ^(18)O of the four habitats decreased gradually with increasing depth.Theδ^(2)H andδ^(18)O values of water extracted from the stems of the four plants had similar variation trends,that is,the maximum was observed in spring and the minimum in summer.Among the four plants,H.caspica had the highest stable isotopic values in the stem water,followed by N.sibirica,H.ammodendron,and P.euphratica.The water sources and utilization ratios of desert vegetation varied across different growth stages.Throughout the growing period,H.ammodendron mainly used groundwater,whereas the water source proportions used by N.sibirica varied greatly throughout the growing season.In spring,plants mainly relied on surface soil water,with a contribution rate of 80%-94%.However,in summer,the proportion of deep soil water used was 31%-36%;and in autumn,the proportion of middle soil water used was 33%-36%.H.caspica mainly relied on topsoil water in spring and autumn,and the proportion of soil water in the middle layer slightly increased to 20%-36%in summer.P.euphratica mainly used intermediate soil water in spring with a utilization rate of 53%-54%.In summer,groundwater was the main source,with a utilization rate of 72%-88%,and only 2%-5%came from river water,whereas in autumn,the river water utilization rate rose to 11%-21%.The results indicated that there were significant differences in water use sources during the growing period for desert vegetation in arid areas.This research provides a theoretical basis for understanding water use mechanisms,water adaptation strategies,and vegetation restoration and management in arid areas.