期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
Nanostructuring of Mg-Based Hydrogen Storage Materials:Recent Advances for Promoting Key Applications 被引量:9
1
作者 Li Ren Yinghui Li +6 位作者 Ning Zhang Zi Li Xi Lin Wen Zhu Chong Lu Wenjiang Ding Jianxin Zou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期30-56,共27页
With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels... With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided. 展开更多
关键词 Mg-based hydrogen storage materials NANOSTRUCTURE hydrogen storage THERMODYNAMICS KINETICS On-board hydrogen storage
下载PDF
Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials 被引量:20
2
作者 Qian Li Yangfan Lu +10 位作者 Qun Luo Xiaohua Yang Yan Yang Jun Tan Zhihua Dong Jie Dang Jianbo Li Yuan Chen Bin Jiang Shuhui Sun Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1922-1941,共20页
Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamic... Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamics and kinetic properties pose major challenges for their engineering applications.Herein,we review the recent progress in improving their thermodynamics and kinetics,with an emphasis on the models and the influence of various parameters in the calculated models.Subsequently,the impact of alloying,composite,and nanocrystallization on both thermodynamics and dynamics are discussed in detail.In particular,the correlation between various modification strategies and the hydrogen capacity,dehydrogenation enthalpy and temperature,hydriding/dehydriding rates are summarized.In addition,the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior.This review concludes with an outlook on the remaining challenge issues and prospects. 展开更多
关键词 Magnesium-based hydrogen storage materials Hydriding/dehydriding reactions THERMODYNAMICS Kinetic models Analysis methods
下载PDF
Kinetics in Mg-based hydrogen storage materials:Enhancement and mechanism 被引量:23
3
作者 Qun Luo Jianding Li +3 位作者 Bo Li Bin Liu Huaiyu Shao Qian Li 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第1期58-71,共14页
Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for... Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for a high temperature to achieve 0.1 MPa hydrogen equilibrium pressure limit the applications in the onboard storage in Fuel cell vehicles(FCVs).Over the past decades,many methods have been applied to improve the hydriding/dehydriding(H/D)kinetics of Mg/MgH 2 by forming amorphous or nanosized particles,adding catalysts and employing external energy field,etc.However,which method is more effective and the intrinsic mechanism they work are widely differing versions.The hydrogenation and dehydrogenation behaviors of Mg-based alloys analyzing by kinetic models is an efficient way to reveal the H/D kinetic mechanism.However,some recently proposed models with physical meaning and simple analysis method are not known intimately by researchers.Therefore,this review focuses on the enhancement method of kinetics in Mg-based hydrogen storage materials and introduces the new kinetic models. 展开更多
关键词 Magnesium alloys hydrogen storage materials Hydriding/dehydriding reactions KINETICS
下载PDF
Novel progress in the development of hydrogen storage materials
4
《Bulletin of the Chinese Academy of Sciences》 2007年第1期7-7,共1页
A new dehydrogenation mechanism for LiBH<sub>4</sub>, a new hydrogen storage material, has recently been
关键词 Novel progress in the development of hydrogen storage materials
下载PDF
In situ formation of multiple catalysts for enhancing the hydrogen storage of MgH_(2) by adding porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres 被引量:1
5
作者 Bing Zhang Xiubo Xie +6 位作者 Yukun Wang Chuanxin Hou Xueqin Sun Yuping Zhang Xiaoyang Yang Ronghai Yu Wei Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1227-1238,共12页
MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high... MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2). 展开更多
关键词 Mg-based hydrogen storage material Ni_(3)ZnC_(0.7)/Ni@CNT particles Ni loaded carbon nanotubes Multiple catalysts.
下载PDF
Vermiform Ni@CNT derived from one-pot calcination of Ni-MOF precursor for improving hydrogen storage of MgH_(2)
6
作者 Zi-yin DAI Bing ZHANG +10 位作者 Hideo KIMURA Li-rong XIAO Rong-han LIU Cui NI Chuan-xin HOU Xue-qin SUN Yu-ping ZHANG Xiao-yang YANG Rong-hai YU Wei DU Xiu-bo XIE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2629-2644,共16页
The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).Mg... The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent. 展开更多
关键词 Mg-based hydrogen storage material activation energy Ni-loaded carbon nanotubes catalyst mechanism
下载PDF
Improved hydrogen storage kinetics of MgH_(2) using TiFe_(0.92)Mn_(0.04)Co_(0.04) with in-situ generated α-Fe as catalyst
7
作者 Zefeng Li Yangfan Lu +3 位作者 Jingfeng Wang Yu'an Chen Qian Li Fushen Pan 《Materials Reports(Energy)》 EI 2024年第1期95-103,共9页
While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction... While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction kinetics.Herein,we report that the TiFe_(0.92)Mn_(0.04)Co_(0.04) catalyst can overcome the abovementioned challenges.The synthesized MgH_(2)-30 wt% TiFe_(0.92)Mn_(0.04)Co_(0.04) can release 4.5 wt%of hydrogen in 16 min at 250℃,three times as fast as MgH_(2).The activation energy of dehydrogenation was as low as 84.6 kJ mol^(-1),which is 46.8%reduced from pure MgH_(2).No clear degradation of reaction rates and hydrogen storage capacity was observed for at least 30 cycles.Structural studies reveal that TiFe_(0.92)Mn_(0.04)Co_(0.04) partially decomposes to in-situ generatedα-Fe particles dispersed on TiFe_(0.92)Mn_(0.04)Co_(0.04).The presence ofα-Fe reduces the formation of an oxide layer on TiFe_(0.92)Mn_(0.04)Co_(0.04),enabling the activation processes.At the same time,the hydrogen incorporation capabilities of TiFe_(0.92)Mn_(0.04)Co_(0.04) can provide more hydrogen diffusion paths,which promote hydrogen dissociation and diffusion.These discoveries demonstrate the advanced nature and importance of combining the in-situ generatedα-Fe with TiFe_(0.92)Mn_(0.04)Co_(0.04).It provides a new strategy for designing highly efficient and stable catalysts for Mg-based hydrogen storage materials. 展开更多
关键词 hydrogen storage materials MAGNESIUM De/hydrogenation kinetics CATALYST
下载PDF
Effect of ternary transition metal sulfide FeNi_(2)S_(4)on hydrogen storage performance of MgH_(2) 被引量:4
8
作者 Yaokun Fu Lu Zhang +6 位作者 Yuan Li Sanyang Guo Han Yu Wenfeng Wang Kailiang Ren Wei Zhang Shumin Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2927-2938,共12页
Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-bas... Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-based materials(MgH_(2))are currently deemed as an attractive candidate due to the potentially high hydrogen storage density(7.6 wt%),however,the stable thermodynamics and slow kinetics limit the practical application.In this study,we design a ternary transition metal sulfide FeNi_(2)S_(4)with a hollow balloon structure as a catalyst of MgH_(2)to address the above issues by constructing a MgH_(2)/Mg_(2)NiH_(4)-MgS/Fe system.Notably,the dehydrogenation/hydrogenation of MgH_(2)has been significantly improved due to the synergistic catalysis of active species of Mg_(2)Ni/Mg_(2)NiH_(4),MgS and Fe originated from the MgH_(2)-FeNi_(2)S_(4)composite.The hydrogen absorption capacity of the MgH_(2)-FeNi_(2)S_(4)composite reaches to 4.02 wt%at 373 K for 1 h,a sharp contrast to the milled-MgH_(2)(0.67 wt%).In terms of dehydrogenation process,the initial dehydrogenation temperature of the composite is 80 K lower than that of the milled-MgH_(2),and the dehydrogenation activation energy decreases by 95.7 kJ·mol-1 compared with the milled-MgH_(2)(161.2 kJ·mol^(-1)).This method provides a new strategy for improving the dehydrogenation/hydrogenation performance of the MgH_(2)material. 展开更多
关键词 hydrogen storage materials Magnesium hydride FeNi_(2)S_(4) hydrogen storage kinetics CATALYSTS
下载PDF
Facet-dependent catalytic activity of two-dimensional Ti_(3)C_(2)T_(x) MXene on hydrogen storage performance of MgH_(2) 被引量:1
9
作者 Haiguang Gao Rui Shi +4 位作者 Yana Liu Yunfeng Zhu Jiguang Zhang Liquan Li Xiaohui Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3724-3735,共12页
Two-dimensional Ti_(3)C_(2)T_(x) MXenes exposing different active facets are introduced into MgH_(2), and their catalytic effects are systematically investigated in depth through experimental and theoretical approache... Two-dimensional Ti_(3)C_(2)T_(x) MXenes exposing different active facets are introduced into MgH_(2), and their catalytic effects are systematically investigated in depth through experimental and theoretical approaches. Excluding factors such as interlayer space, surface functional groups and experimental contingency, the exposed facets is considered to be the dominant factor for catalytic activity of Ti_(3)C_(2)T_(x) towards MgH_(2).More exposed edge facets of Ti_(3)C_(2)T_(x) displays higher catalytic activity than that with more exposed basal facets, which also leads to different rate-controlling steps of MgH_(2) in the de/hydrogenation process. The low work function, strong hydrogen affinity and high content of in situ metallic Ti for the edge facet contribute the high catalytic activity. This work will give insights into the structural design of two-dimensional Ti_(3)C_(2)T_(x) MXene used for enhancing the catalytic activity in various fields. 展开更多
关键词 hydrogen storage materials Magnesium hydride MXene CATALYST Facet design
下载PDF
Mg-based materials for hydrogen storage 被引量:14
10
作者 Yuanyuan Shang Claudio Pistidda +2 位作者 Gökhan Gizer Thomas Klassen Martin Dornheim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1837-1860,共24页
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as w... Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity. 展开更多
关键词 hydrogen storage materials Magnesium-based hydrides Metal hydrides NANOSTRUCTURES Catalysts hydrogenation and dehydrogenation Kinetics THERMODYNAMICS Activation energy
下载PDF
Cycling hydrogen desorption properties and microstructures of MgH_(2)-AlH_(3)-NbF_(5) hydrogen storage materials 被引量:12
11
作者 Xiao-Sheng Liu Hai-Zhen Liu +5 位作者 Ning Qiu Yan-Bing Zhang Guang-Yao Zhao Li Xu Zhi-Qiang Lan Jin Guo 《Rare Metals》 SCIE EI CAS CSCD 2021年第4期1003-1007,共5页
Magnesium hydride(MgH_(2)) is a candidate material for hydrogen storage.MgH_(2)-AlH_(3) composite shows superior hydrogen desorption properties than pure MgH_(2).However,this composite still suffers from poor cycling ... Magnesium hydride(MgH_(2)) is a candidate material for hydrogen storage.MgH_(2)-AlH_(3) composite shows superior hydrogen desorption properties than pure MgH_(2).However,this composite still suffers from poor cycling performance.In this work,NbF_(5) was utilized to improve the cycling properties of the MgH_(2)-AlH_(3) composite.Cycling hydrogen desorption studies show that NbF_(5) significantly improves the cycling stability of MgH_(2)-AlH_(3).The MgH_(2)-AlH_(3)-NbF_(5) composite can release about 2.7 wt% of hydrogen at 300℃ for 1 h and the hydrogen desorption capacity can maintain at 2.7 wt% for more than100 cycles.In comparison,the hydrogen desorption capacity of the MgH_(2)-AlH_(3) composite is decreasing with the cycle number increasing.The capacity is reduced from a maximum value of 3.3 wt% to about 1.0 wt% after 40 cycles.Brunauer-Emmett-Teller(BET) surface area measurements show that the particle size of MgH_(2)-AlH_(3) composite decreases after cycling,which means pulverization of the composite.NbF_(5) can to some extent suppress the pulverization of the composite during cycling,which partially contributes to the improvement of the cycling hydrogen desorption properties of the material. 展开更多
关键词 hydrogen storage materials Magnesium hydride Aluminum hydride Niobium fluoride Cycling properties
原文传递
Progress in improving thermodynamics and kinetics of new hydrogen storage materials 被引量:4
12
作者 Li-fang SONG Chun-hong JIANG +8 位作者 Shu-sheng LIU Cheng-li JIAO Xiao-liang SI Shuang WANG Fen LI Jian ZHANG Li-xian SUN Fen XU Feng-lei HUANG 《Frontiers of physics》 SCIE CSCD 2011年第2期151-161,共11页
Hydrogen storage material has been much developed recently because of its potential for proton exchange membrane (PEM) fuel cell applications. A successful solid-state reversible storage material should meet the req... Hydrogen storage material has been much developed recently because of its potential for proton exchange membrane (PEM) fuel cell applications. A successful solid-state reversible storage material should meet the requirements of high storage capacity, suitable thermodynamic properties, and fast adsorption and desorption kinetics. Complex hydrides, including boron hydride and alanate, ammonia borane, metal organic frameworks (MOFs), covalent organic frameworks (COFs) and zeolitic imidazolate frameworks (ZIFs), are remarkable hydrogen storage materials because of their advantages of high energy density and safety. This feature article focuses mainly on the thermodynamics and kinetics of these hydrogen storage materials in the past few years. 展开更多
关键词 ammonia borane hydrogen storage materials hydrides KINETICS metal organic frameworks THERMODYNAMICS
原文传递
Understanding the dehydrogenation properties of Mg(0001)/MgH_(2)(110)interface from first principles
13
作者 Jianchuan Wang Bo Han +3 位作者 Zhiquan Zeng Shiyi Wen Fen Xu Yong Du 《Materials Reports(Energy)》 EI 2024年第1期89-94,共6页
Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may pl... Magnesium hydride is one of the most promising solid-state hydrogen storage materials for on-board application.Hydrogen desorption from MgH_(2) is accompanied by the formation of the Mg/MgH_(2) interfaces,which may play a key role in the further dehydrogenation process.In this work,first-principles calculations have been used to understand the dehydrogenation properties of the Mg(0001)/MgH_(2)(110) interface.It is found that the Mg(0001)/MgH_(2)(110) interface can weaken the Mg-H bond.The removal energies for hydrogen atoms in the interface zone are significantly lower compared to those of bulk MgH_(2).In terms of H mobility,hydrogen diffusion within the interface as well as into the Mg matrix is considered.The calculated energy barriers reveal that the migration of hydrogen atoms in the interface zone is easier than that in the bulk MgH_(2).Based on the hydrogen removal energies and diffusion barriers,we conclude that the formation of the Mg(0001)/MgH_(2)(110) interface facilitates the dehydrogenation process of magnesium hydride. 展开更多
关键词 Magnesium hydrides First-principles calculation hydrogen storage materials INTERFACE hydrogen desorption
下载PDF
Key Technologies for Preparing Nanoparticles of Hydrogen Storage Material by Combining Ball Milling with Aerosol Generation
14
作者 ZHAO Xu-zhe Leon L.Shaw 《International Journal of Plant Engineering and Management》 2015年第1期28-36,共9页
The developing trend of vehicle is electrical vehicle in future, and fuel cell will become the one of the main batteries of electrical vehicle because of its the prominent properties. The one of current obstacle for f... The developing trend of vehicle is electrical vehicle in future, and fuel cell will become the one of the main batteries of electrical vehicle because of its the prominent properties. The one of current obstacle for fuel cell in popularization and applications is lacking of excellent performance hydrogen storage materials and advanced technologies of preparing nanoparticles for hydrogen storage materials. The principles, typical classifications and characteristics of chemically and physically preparing nanoparticles for hydrogen storage materials are briefly introduced. And it predicts that physical method is going to be the major developing direction for nanoparticles for hydrogen storage material fabrication. The principle, the system composition & characteristics of method by means of combining ball milling with aerosol generation preparing nanoparticles for hydrogen storage materials are expounded. The ball milling process for hydrogen storage material is needed to conduct effective cooling process, and the lower cooling temperature has better milling results. The cooling media for ball milling include room temperature water, ice water, pure ethanol with dry ice and liquid nitrogen. The proper level of vacuum in canister is significant for injecting aerosol particles during the ball milling. In order to maximize the friction force, it is better to design multi-level stirring rod and the profile of stirring rod with large contact area, therefor stirring rod with cylinder has less grinding effect than with ring profile. The more stirring rod with more layers will obtain higher stirring efficiency. The distance between each layer of branches is 2.5 times larger than diameter of the ball. The simulation results show that the average speed has 120% increases from 400 rpm to 800 rpm. Based on the kinetic energy equation, it is obtained that there is 350% increase in energy from 400 r/min to 800 r/min. The higher stirring speed will generate the finer material. And the discussion of this article provides a favorable basis of preparing nanoparticles for hydrogen storage materials in fuel cell vehicle. 展开更多
关键词 NANOPARTICLES hydrogen storage material aerosol generation ball milling flow fields HYDRODYNAMICS
原文传递
Microstructural evolution of melt-spun Mg-10Ni-2Mm hydrogen storage alloy
15
作者 武英 邢娜 +4 位作者 卢志超 韩伟 周少雄 J.K.SOLBERG V.A.YARTYS 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期121-126,共6页
The microstructural evolution of a Mg-10Ni-2Mm(molar fraction,%)(Mm=Ce,La-rich mischmetal) hydrogen storage alloys applied with various solidification rates was studied.The results show that the grain size of melt... The microstructural evolution of a Mg-10Ni-2Mm(molar fraction,%)(Mm=Ce,La-rich mischmetal) hydrogen storage alloys applied with various solidification rates was studied.The results show that the grain size of melt-spun ribbon is remarkably reduced by increasing the solidification rate.The microcrystalline,nanocrystalline and amorphous microstructures are obtained by applying the surface velocities of the graphite wheel of 3.1,10.5 and 20.9 m/s,respectively.By applying the surface velocity of the graphite wheel of 3.1 m/s,the melt-spun specimen obtains full crystalline with a considerable amount of coarse microcrystalline Mg and Mg2Ni except for some Mm-rich particles.The amount of nanocrystalline phases significantly increases with increasing the surface velocity of the wheel to 10.5 m/s,and the microstructure is composed of a large amount of nanocrystalline phases of Mg and Mg2Ni particles.A mixed microstructure containing amorphous and nanocrystalline phases is obtained at a surface velocity of the wheel of 20.9 m/s.The optimal microstructure with a considerable amount of nanocrystalline Mg and Mg2Ni in an amorphous matrix is expected to have the maximum hydrogen absorption capacity and excellent hydrogenation kinetics. 展开更多
关键词 hydrogen storage materials Mg-based alloys RAPID-SOLIDIFICATION MICROSTRUCTURE transmission electron microscopy
下载PDF
Tailoring MgH_(2) for hydrogen storage through nanoengineering and catalysis 被引量:8
16
作者 Zhao Ding Yuting Li +7 位作者 Hang Yang Yangfan Lu Jun Tan Jianbo Li Qian Li Yu'an Chen Leon L.Shaw Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第11期2946-2967,共22页
Hydrogen energy has been recognized as “Ultimate Power Source” in the 21st century, which could be the best solution to the looming energy crisis and climate degeneration in the near future. Due to its high safety, ... Hydrogen energy has been recognized as “Ultimate Power Source” in the 21st century, which could be the best solution to the looming energy crisis and climate degeneration in the near future. Due to its high safety, low price, abundant resources and decent hydrogen storage density, magnesium based solid-state hydrogen storage materials are becoming the leading candidate for onboard hydrogen storage. However,the high operation temperature and slow reaction rate of MgH_(2), as a result of the large formation enthalpy and high reaction activation energy,respectively, are the first and most difficult problems we need to face and overcome to realize its industrialization. Herein, a state-of-the-art review on tailoring the stable thermodynamics and sluggish kinetics of hydrogen storage in MgH_(2), particularly through nanoengnieering and catalysis is presented, aiming to provide references and solutions for its promotion and application. Promising methods to overcome the challenges faced by MgH_(2)/Mg, such as bidirectional catalysts and nanoconfinement with in-situ catalysis are compared and the required improvements are discussed to stimulate further discussions and ideas in the rational design of MgH_(2)/Mg systems with ability for hydrogen release/uptake at lower temperatures and cycle stability in the near future. 展开更多
关键词 hydrogen storage materials MgH_(2) NANOENGINEERING CATALYSIS hydrogen release hydrogen uptake
下载PDF
Catalytic effect of Ni@rGO on the hydrogen storage properties of MgH2 被引量:13
17
作者 Pengyang Yao Ying Jiang +4 位作者 Yang Liu Chengzhang Wu Kuo-Chih Chou Tao Lyu Qian Li 《Journal of Magnesium and Alloys》 SCIE 2020年第2期461-471,共11页
Uniform-uispersed Ni nanoparticics(NPs)anchored on reduced graphene oxide(Ni@rGO)catalyzed MgH2(MH-Ni@rGO)has been fabricated by mechanical milling.The effects of milling time and Ni loading amount on the hydrogen sto... Uniform-uispersed Ni nanoparticics(NPs)anchored on reduced graphene oxide(Ni@rGO)catalyzed MgH2(MH-Ni@rGO)has been fabricated by mechanical milling.The effects of milling time and Ni loading amount on the hydrogen storage properties of MgH2 have been investigated.The initial hydrogen desorption temperature of MgH2 catalyzed by 10 wt.%Ni4@rGO6 for milling 5 h is significantly decreased from 251℃ to 190℃.The composite can absorb 5.0 wt.%hydrogen in 20 min at 100℃,while it can desorb 6.1 wt.%within 15 min at 300℃.Through the investigation of the phase transformation and dehydrogenation kinetics during hydrogen ab/desorption cycles,we found that the in-situ formed Mg2Ni/Mg2NiH4 exhibited better catalytic effect than Ni.When Ni loading amount is 45 wt.%,the rGO in Ni@rGO catalysts can prevent the reaction of Ni and Mg due to the strong interaction between rGO and Ni NPs. 展开更多
关键词 hydrogen storage materials Ni@rGO MgH2 hydrogenation/dehydrogenation properties Catalytic mechanism
下载PDF
Mn nanoparticles enhanced dehydrogenation and hydrogenation kinetics of MgH_(2) for hydrogen storage 被引量:7
18
作者 Yan CHEN Hao-yu ZHANG +4 位作者 Fu-ying WU Ze SUN Jia-guang ZHENG Liu-ting ZHANG Li-xin CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3469-3477,共9页
Mn nanoparticles(nano-Mn)were successfully synthesized and doped into MgH_(2) to improve its de/hydrogenation properties.Compared with MgH_(2),the onset desorption temperature of 10 wt.%nano-Mn modified MgH_(2) was de... Mn nanoparticles(nano-Mn)were successfully synthesized and doped into MgH_(2) to improve its de/hydrogenation properties.Compared with MgH_(2),the onset desorption temperature of 10 wt.%nano-Mn modified MgH_(2) was decreased to 175℃ and 6.7,6.5 and 6.1 wt.%hydrogen could be released within 5,10 and 25 min at 300,275 and 250℃,respectively.Besides,the composite started to take up hydrogen at room temperature and absorbed 2.0 wt.%hydrogen within 30 min at low temperature of 50℃.The hydrogenation activation energy of MgH_(2) was reduced from(72.5±2.7)to(18.8±0.2)kJ/mol after doping with 10 wt.%nano-Mn.In addition,the MgH_(2)+10 wt.%nano-Mn composite exhibited superior cyclic property,maintaining 92%initial capacity after 20 cycles. 展开更多
关键词 hydrogen storage material magnesium hydride Mn nanoparticles catalytic mechanism REVERSIBILITY
下载PDF
Structural and Electronic Properties of Li2Mg(NH)2 for Hydrogen Storage: First-principles Study
19
作者 刘华 张永红 黄世萍 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期5-10,I0001,共7页
The structural and electronic properties of Li2Mg(NH)2 for hydrogen storage have been studied by first-principles calculation. The optimal unit cell parameters and the distance of N-H are determined, which are in go... The structural and electronic properties of Li2Mg(NH)2 for hydrogen storage have been studied by first-principles calculation. The optimal unit cell parameters and the distance of N-H are determined, which are in good agreement with the experimental data. The bulk modules and the energies of zero pressure are obtained by using Murnaghan equation of states. The results show that the α-Li2Mg(NH)2 is a ground state configuration. The overlap population analysis shows that the N-Li/Mg ionic characteristics and N-H interaction of αphase are weaker than those of βphase. The valence band is dominated by the presence of N s and p states, hybridized with the H s state. 展开更多
关键词 hydrogen storage material Electronic structure First-principles calculation
下载PDF
Effect of cerium content on microstructure and hydrogen storage performance of Ti_(24)Cr_(17.5)V_(50)Fe_(8.5)Ce_x(x=0-1.0) alloys 被引量:4
20
作者 米菁 刘晓鹏 +4 位作者 李岩 蒋利军 李志念 黄倬 王树茂 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第1期154-158,共5页
Effect of Ce addition on microstructure and hydrogen storage performance of Ti24Cr17.5V50Fe8.5Cex(x=0, 0.5at.%, 0.8at.% and 1.0at.%) alloys was studied by X-ray diffraction, scanning electron microscopy and P-C-isot... Effect of Ce addition on microstructure and hydrogen storage performance of Ti24Cr17.5V50Fe8.5Cex(x=0, 0.5at.%, 0.8at.% and 1.0at.%) alloys was studied by X-ray diffraction, scanning electron microscopy and P-C-isotherm measurements.The results indicated that Ce addition was a useful way to improve the flatness of the plateau and increase hydrogen storage capacity of Ti24Cr17.5V50Fe8.5 alloy.It was indicated that both homogenization of composition and increase of hydrogen diffusion coefficient were the main reasons for improving the hydrogen storage performance of Ti24Cr17.5V50Fe8.5Cex alloys. 展开更多
关键词 hydrogen storage materials Ti-Cr-V alloys BCC alloys rare earths
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部