期刊文献+
共找到4,973篇文章
< 1 2 249 >
每页显示 20 50 100
Hydrogen sulfide responsive nanoplatforms: Novel gas responsive drug delivery carriers for biomedical applications
1
作者 Jiafeng Zou Zeting Yuan +9 位作者 Xiaojie Chen You Chen Min Yao Yang Chen Xiang Li Yi Chen Wenxing Ding Chuanhe Xia Yuzheng Zhao Feng Gao 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第1期1-17,共17页
Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focus... Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focused on the production and pharmacological side effects caused by H_(2)S.Therefore,effective strategies to remove H_(2)S has become a key research topic.Furthermore,the development of novel nanoplatforms has provided new tools for the targeted removal of H_(2)S.This paper was performed to review the association between H_(2)S anddisease,relatedH_(2)S inhibitory drugs,aswell as H_(2)S responsive nanoplatforms(HRNs).This review first analyzed the role of H_(2)S in multiple tissues and conditions.Second,common drugs used to eliminate H_(2)S,as well as their potential for combination with anticancer agents,were summarized.Not only the existing studies on HRNs,but also the inhibition H_(2)S combined with different therapeutic methods were both sorted out in this review.Furthermore,this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail.Finally,potential challenges of HRNs were proposed.This study demonstrates the excellent potential of HRNs for biomedical applications. 展开更多
关键词 hydrogen sulfide Disease mechanisms Removal of hydrogen sulfide Responsive nanoplatforms CHALLENGES Biomedical applications
下载PDF
Absorption characteristics,model,and molecular mechanism of hydrogen sulfide in morpholine acetate aqueous solution
2
作者 Hongwei Jin Yun Teng +8 位作者 Kangkang Li Zhou Feng Zhonghao Li Shiqi Qu Hongzhi Xia Huanong Cheng Yugang Li Xinshun Tan Shiqing Zheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期125-135,共11页
The solubility of H_(2)S was measured in solutions of N-butyl-N-methylmorpholine acetate([Bmmorp][Ac])containing 20%-40%(mass)water at experimental temperatures ranged from 298.15 to 328.15 K and pressures up to 320 k... The solubility of H_(2)S was measured in solutions of N-butyl-N-methylmorpholine acetate([Bmmorp][Ac])containing 20%-40%(mass)water at experimental temperatures ranged from 298.15 to 328.15 K and pressures up to 320 k Pa.The total solubility of H_(2)S increased with higher temperatures,lower pressures,and reduced water content.The reaction equilibrium thermodynamic model was used to correlate the solubility data.The results indicate that the chemical reaction equilibrium constant decrease with increasing water content and temperature,whereas Henry constant increase with increasing water content and temperature.Compared with other ionic liquids,H_(2)S exhibits a higher physical absorption enthalpy and a lower chemical absorption enthalpy in[Bmmorp][Ac]aqueous solution.This suggests that[Bmmorp][Ac]has a strong physical affinity for H_(2)S and low energy requirement for desorption.Quantum chemical methods were used to investigate the molecular mechanism of H_(2)S absorption in ionic liquids.The interaction energy analysis revealed that the binding of H_(2)S with the ionic liquid in a1:2 ratio is more stable.Detailed analyses by the methods of the interaction region indicator and the atoms in molecules were conducted to the interactions between H_(2)S and the ionic liquid. 展开更多
关键词 Ionic liquid hydrogen sulfide MODEL SOLUBILITY Molecular mechanism
下载PDF
Synthesis of High Purity Lithium Sulfide for Sulfide Solid Electrolyte Applications through Hydrogen Reduction of Lithium Sulfate
3
作者 Arafumi Kimura 《陶瓷学报》 CAS 北大核心 2024年第4期689-695,共7页
This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction pro... This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction process has been successfully developed to synthesize well-crystallized and single-phase Li_(2)S powder by investigating the melting,sintering and reduction behavior of the mixtures of Li_(2)SO_(4)-Li_(2)S.High purity alumina was found to be the most suitable crucible material for producing high purity Li_(2)S,because it was not attacked by the Li_(2)SO_(4)-Li_(2)S melt during heating,as compared with other materials,such as carbon,mullite,quartz,boron nitride and stainless steel.The use of synthesized LizS resulted in higher purity and substantially higher room temperature ionic conductivity(2.77 mS·cm^(-1))for the argyrodite sulfide electrolyte Li_(6)PS_(5)Cl than commercial Li_(2)S(1.12 mS·cm^(-1)).This novel method offers a great opportunity to produce battery grade Li_(2)S for sulfide solid electrolyte applications. 展开更多
关键词 lithium sulfide lithium sulfate hydrogen reduction sulfide solid electrolyte all-solid-state lithium-ion battery
下载PDF
Hydrogen sulfide reduces oxidative stress in Huntington's disease via Nrf2
4
作者 Zige Jiang Dexiang Liu +7 位作者 Tingting Li Chengcheng Gai Danqing Xin Yijing Zhao Yan Song Yahong Cheng Tong Li Zhen Wang 《Neural Regeneration Research》 SCIE CAS 2025年第6期1776-1788,共13页
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an... The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease. 展开更多
关键词 apoptosis CYSTATHIONINE-Β-SYNTHASE nuclear factor erythroid 2-related factor 2 Huntington's disease hydrogen sulfide MITOCHONDRION NEUROPLASTICITY oxidative stress quinolinic acid reactive oxygen species
下载PDF
Comparative study on the hydrogen storage performance of as-milled MgRENi rapid quenched alloy catalyzed by metal sulfides
5
作者 Xiaoping Dong Zhaoqing Zhang +3 位作者 Liying Yang Shenghai Xin Dandan Su Zhiyuan Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2010-2023,共14页
The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehy... The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide. 展开更多
关键词 Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy COS CoS_(2)and MoS_(2)sulfide MILLING Activation energy hydrogen storage dynamics
下载PDF
Nano-Ni-Induced Electronic Modulation of MoS_(2) Nanosheets Enables Energy-Saving H_(2) Production and Sulfide Degradation
6
作者 Fan Liu Xinghong Cai +6 位作者 Yang Tang Wenqian Liu Qianwei Chen Peixin Dong Maowen Xu Yangyang Tan Shujuan Bao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期228-235,共8页
Electrocatalytic hydrogen evolution and sulfion(S^(2-))recycling are promising strategies for boosting H_(2)production and removing environmental pollutants.Here,a nano-Ni-functionalized molybdenum disulfide(MoS_(2))n... Electrocatalytic hydrogen evolution and sulfion(S^(2-))recycling are promising strategies for boosting H_(2)production and removing environmental pollutants.Here,a nano-Ni-functionalized molybdenum disulfide(MoS_(2))nanosheet was assembled on steel mesh(Ni-MoS_(2)/SM)for use in sulfide oxidation reaction-assisted,energy-saving H_(2)production.Experimental and theoretical calculation results revealed that anchoring nano-Ni on high-surface-area slack MoS_(2)nanosheets not only optimized catalyst adsorption of polysulfides but also played an important role in promoting hydrogen evolution reaction kinetics by absorbing OH_(ad),thereby greatly enhancing the catalytic performance toward sulfide oxidation reaction and hydrogen evolution reaction.Meanwhile,the Ni/MoS^(2-)based hydrogen evolution reaction+sulfide oxidation reaction system achieved nearly 100%hydrogen production efficiency and only consumed 61%less power per kWh than the oxygen evolution reaction+hydrogen evolution reaction system,which suggested our proposed Ni-MoS_(2)and novel hydrogen production system are promising for sustainable energy production. 展开更多
关键词 hydrogen evolution reaction low energy consumption molybdenum disulfide sulfide oxidation reaction
下载PDF
Simulation study of hydrogen sulfide removal in underground gas storage converted from the multilayered sour gas field 被引量:2
7
作者 Yi Yang Longxin Li +4 位作者 Xia Wang Nan Qin Ruihan Zhang Yulong Zhao Ye Tian 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第5期107-118,共12页
A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock an... A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock and fluid properties of the Huangcaoxia gas field, a multilayered model was built. The upper layer Jia-2 contains a high concentration of H_(2)S (27.2 g/m^(3)), and the lower layer Jia-1 contains a low concentration of H_(2)S (14.0 mg/m^(3)). There is also a low-permeability interlayer between Jia-1 and Jia-2. The multi-component fluid characterizations for Jia-1 and Jia-2 were implemented separately using the Peng-Robinson equation of state in order to perform the compositional simulation. The H_(2)S concentration gradually increased in a single cycle and peaked at the end of the production season. The peak H_(2)S concentration in each cycle showed a decreasing trend when the recovery factor (RF) of the gas field was lower than 70%. When the RF was above 70%, the peak H_(2)S concentration increased first and then decreased. A higher reservoir RF, a higher maximum working pressure, and a higher working gas ratio will lead to a higher H_(2)S removal efficiency. Similar to developing multi-layered petroleum fields, the operation of multilayered gas storage can also be divided into multi-layer commingled operation and independent operation for different layers. When the two layers are combined to build the storage, the sweet gas produced from Jia-1 can spontaneously mix with the sour gas produced from Jia-2 within the wellbore, which can significantly reduce the overall H_(2)S concentration in the wellstream. When the working gas volume is set constant, the allocation ratio between the two layers has little effect on the H_(2)S removal. After nine cycles, the produced gas’s H_(2)S concentration can be lowered to 20 mg/m^(3). Our study recommends combining the Jia-2 and Jia-1 layers to build the Huangcaoxia underground gas storage. This plan can quickly reduce the H_(2)S concentration of the produced gas to 20 mg/m^(3), thus meeting the gas export standards as well as the HSE (Health, Safety, and Environment) requirements in the field. This study helps the engineers understand the H_(2)S removal for sulfur-containing UGS as well as provides technical guidelines for converting other multilayered sour gas fields into underground storage sites. 展开更多
关键词 Underground gas storage Multilayered gas field-Sour gas reservoir hydrogen sulfide removal.Compositional simulation
下载PDF
Dissecting molecular mechanisms underlying ferroptosis in human umbilical cord mesenchymal stem cells:Role of cystathionineγ-lyase/hydrogen sulfide pathway 被引量:3
8
作者 Bin Hu Xiang-Xi Zhang +1 位作者 Tao Zhang Wan-Cheng Yu 《World Journal of Stem Cells》 SCIE 2023年第11期1017-1034,共18页
BACKGROUND Ferroptosis can induce low retention and engraftment after mesenchymal stem cell(MSC)delivery,which is considered a major challenge to the effectiveness of MSC-based pulmonary arterial hypertension(PAH)ther... BACKGROUND Ferroptosis can induce low retention and engraftment after mesenchymal stem cell(MSC)delivery,which is considered a major challenge to the effectiveness of MSC-based pulmonary arterial hypertension(PAH)therapy.Interestingly,the cystathionineγ-lyase(CSE)/hydrogen sulfide(H_(2)S)pathway may contribute to mediating ferroptosis.However,the influence of the CSE/H_(2)S pathway on ferroptosis in human umbilical cord MSCs(HUCMSCs)remains unclear.AIM To clarify whether the effect of HUCMSCs on vascular remodelling in PAH mice is affected by CSE/H_(2)S pathway-mediated ferroptosis,and to investigate the functions of the CSE/H_(2)S pathway in ferroptosis in HUCMSCs and the underlying mechanisms.METHODS Erastin and ferrostatin-1(Fer-1)were used to induce and inhibit ferroptosis,respectively.HUCMSCs were transfected with a vector to overexpress or inhibit expression of CSE.A PAH mouse model was established using 4-wk-old male BALB/c nude mice under hypoxic conditions,and pulmonary pressure and vascular remodelling were measured.The survival of HUCMSCs after delivery was observed by in vivo bioluminescence imaging.Cell viability,iron accumulation,reactive oxygen species production,cystine uptake,and lipid peroxidation in HUCMSCs were tested.Ferroptosis-related proteins and S-sulfhydrated Kelchlike ECH-associating protein 1(Keap1)were detected by western blot analysis.RESULTS In vivo,CSE overexpression improved cell survival after erastin-treated HUCMSC delivery in mice with hypoxiainduced PAH.In vitro,CSE overexpression improved H_(2)S production and ferroptosis-related indexes,such as cell viability,iron level,reactive oxygen species production,cystine uptake,lipid peroxidation,mitochondrial membrane density,and ferroptosis-related protein expression,in erastin-treated HUCMSCs.In contrast,in vivo,CSE inhibition decreased cell survival after Fer-1-treated HUCMSC delivery and aggravated vascular remodelling in PAH mice.In vitro,CSE inhibition decreased H_(2)S levels and restored ferroptosis in Fer-1-treated HUCMSCs.Interestingly,upregulation of the CSE/H_(2)S pathway induced Keap1 S-sulfhydration,which contributed to the inhibition of ferroptosis.CONCLUSION Regulation of the CSE/H_(2)S pathway in HUCMSCs contributes to the inhibition of ferroptosis and improves the suppressive effect on vascular remodelling in mice with hypoxia-induced PAH.Moreover,the protective effect of the CSE/H_(2)S pathway against ferroptosis in HUCMSCs is mediated via S-sulfhydrated Keap1/nuclear factor erythroid 2-related factor 2 signalling.The present study may provide a novel therapeutic avenue for improving the protective capacity of transplanted MSCs in PAH. 展开更多
关键词 Human umbilical cord mesenchymal stem cells Cystathionineγ-lyase/hydrogen sulfide pathway Ferroptosis Pulmonary arterial hypertension S-sulfhydration
下载PDF
Application and Regeneration of a Non-Aqueous System of Cu/HCl and DMF for the Oxidation of Hydrogen Sulfide in Natural Gas 被引量:1
9
作者 Wang Yingjie Liu Siyuan +3 位作者 Wang Xuening Liu Zhihao Chen Hongyuan Qiu Kui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期71-82,共12页
A copper-based non-aqueous-phase desulfurization agent is prepared by adding CuCl_(2) to the solvent N,Ndimethylformamide(DMF).Static desulfurization experiments show that the agent has high efficiency.However,the des... A copper-based non-aqueous-phase desulfurization agent is prepared by adding CuCl_(2) to the solvent N,Ndimethylformamide(DMF).Static desulfurization experiments show that the agent has high efficiency.However,the desulfurization reaction leads to the formation of a copper sulfide precipitate.It is found that the addition of chloride ions in the form of hydrochloric acid or potassium chloride prevents the formation of copper sulfide,and elemental sulfur is precipitated instead.The efficient absorption of H2S by the Cu/HCl–DMF agent relies on the rapid coordination of Cu^(2+)with DMF,Cl^(−),and H2S molecules to form a[Cu(DMF)_(n−p)(HS−)_(p)(Cl−)_(m)]_((2−p−m))+complex.The desulfurization agent has a sulfur capacity of up to 9.81 g/L when used in static bubble desulfurization at atmospheric pressure.The system has low viscosity and good chemical and thermal stability.It can be rapidly regenerated through continuous oxidation.After five repetitions of the regeneration procedure,the sulfur capacity reaches more than 91%of the initial capacity,indicating the potential of the system for commercial applications. 展开更多
关键词 hydrogen sulfide removal wet oxidation DMF CuCl_(2)
下载PDF
Measurement and model of density,viscosity,and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid
10
作者 Zhonghao Li Yuanyuan Yang +7 位作者 Huanong Cheng Yun Teng Chao Li Kangkang Li Zhou Feng Hongwei Jin Xinshun Tan Shiqing Zheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期210-221,共12页
The density and viscosity of ferric chloride/trioctylmethylammonium chloride ionic liquid(rFeCl_(3)/[A336]Cl)with different molar ratios(r=0.1-0.8)of FeCl_(3) to[A336]Cl were measured at temperatures from 313.15 to 35... The density and viscosity of ferric chloride/trioctylmethylammonium chloride ionic liquid(rFeCl_(3)/[A336]Cl)with different molar ratios(r=0.1-0.8)of FeCl_(3) to[A336]Cl were measured at temperatures from 313.15 to 358.15 K and atmospheric pressure.The density and viscosity data were fitted by the relevant temperature variation equations,respectively.The variation of density and viscosity with temperature and r was obtained.The solubility of rFeCl_(3)/[A336]Cl to H_2S was measured at temperatures from 318.15 to 348.15 K and pressures from 0 to 150 kPa.The effects of temperature,pressure,and r on the solubility of H_(2)S were discussed.The reaction equilibrium thermodynamic model(RETM)was used to fit the H_(2)S solubility data,and the average relative error was less than 1.3%,indicating that the model can relate the solubility data well.And Henry's constant and chemical reaction equilibrium constant were obtained by the RETM fitting.The relationships of Henry's constant and chemical reaction equilibrium constant with temperature and r were analyzed. 展开更多
关键词 Ionic liquids hydrogen sulfide SOLUBILITY Henry's constant Chemical reaction equilibrium constant Model
下载PDF
β-Cyclodextrin-Based Nitrosoglutathione Improves the Storage Quality of Peach by Regulating the Metabolism of Endogenous Nitric Oxide, Hydrogen Sulfide, and Phenylpropane
11
作者 Chen Chen Shuhua Zhu 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第4期1091-1107,共17页
Nitrosoglutathione(GSNO)andβ-cyclodextrin(β-CD)exhibit positive roles in regulating fruit quality.However,there are few reports about the effects of GSNO andβ-CD on enhancing storability and boosting nitric oxide(N... Nitrosoglutathione(GSNO)andβ-cyclodextrin(β-CD)exhibit positive roles in regulating fruit quality.However,there are few reports about the effects of GSNO andβ-CD on enhancing storability and boosting nitric oxide(NO),hydrogen sulfide(H2S),and phenylpropane metabolism in fruits during storage.“Xintaihong”peach were treated with 0.5,1.0,1.5mmol L−1 GSNO in 0.5%(w/v)β-CD solution(GSNO/β-CD).The effects of GSNO/β-CD on endogenous NO,H2S,and phenylpropane metabolism were investigated.Treatment with GSNO/β-CD increased the color difference of peach and inhibited the increase of respiratory intensity,weight loss,and relative conductivity.Treatment with 1.0 mmol L−1 GSNO/β-CD increased the nitric oxide synthase(NOS-like)activity and L-arginine content,thereby promoting the accumulation of endogenous NO.By improving the activities of L-cysteine desulfhydrylase(L-CD),O-acetylserine sulfur lyase(OAS-TL),serine acetyltransferase(SAT),GSNO/β-CD increased the content of endogenous H2S in peach.Treatment with GSNO/β-CD increased the activities of phenylalanine ammonia-lyase(PAL),4-coumarate-CoA ligase(4CL),and cinnamic acid-4-hydroxylase(C4H),promoted the increase of total phenols,flavonoids,and lignin in peach.These results indicated that GSNO/β-CD treatment better maintained the quality of peach by improving the metabolism of endogenous NO,H2S,and phenylpropane during storage. 展开更多
关键词 PEACH nitrosoglutathione nitric oxide hydrogen sulfide phenylpropane
下载PDF
Effect of exogenous hydrogen sulfide in the nucleus tractus solitarius on gastric motility in rats
12
作者 Hong-Zhao Sun Chen-Yu Li +5 位作者 Yuan Shi Jin-Jin Li Yi-Ya Wang Li-Na Han Lu-Jie Zhu Ya-Fei Zhang 《World Journal of Gastroenterology》 SCIE CAS 2023年第29期4557-4570,共14页
BACKGROUND Hydrogen sulfide(H2S)is a recently discovered gaseous neurotransmitter in the nervous and gastrointestinal systems.It exerts its effects through multiple signaling pathways,impacting various physiological a... BACKGROUND Hydrogen sulfide(H2S)is a recently discovered gaseous neurotransmitter in the nervous and gastrointestinal systems.It exerts its effects through multiple signaling pathways,impacting various physiological activities.The nucleus tractus solitarius(NTS),a vital nucleus involved in visceral sensation,was investigated in this study to understand the role of H2S in regulating gastric function in rats.AIM To examine whether H2S affects the nuclear factor kappa-B(NF-κB)and transient receptor potential vanilloid 1 pathways and the neurokinin 1(NK1)receptor in the NTS.METHODS Immunohistochemical and fluorescent double-labeling techniques were employed to identify cystathionine beta-synthase(CBS)and c-Fos co-expressed positive neurons in the NTS during rat stress.Gastric motility curves were recorded by inserting a pressure-sensing balloon into the pylorus through the stomach fundus.Changes in gastric motility were observed before and after injecting different doses of NaHS(4 nmol and 8 nmol),physiological saline,Capsazepine(4 nmol)+NaHS(4 nmol),pyrrolidine dithiocarbamate(PDTC,4 nmol)+NaHS(4 nmol),and L703606(4 nmol)+NaHS(4 nmol).RESULTS We identified a significant increase in the co-expression of c-Fos and CBS positive neurons in the NTS after 1 h and 3 h of restraint water-immersion stress compared to the expressions observed in the control group.Intra-NTS injection of NaHS at different doses significantly inhibited gastric motility in rats(P<0.01).However,injection of saline,first injection NF-κB inhibitor PDTC or transient receptor potential vanilloid 1(TRPV1)antagonist Capsazepine or NK1 receptor blockers L703606 and then injection NaHS did not produce significant changes(P>0.05).CONCLUSION NTS contains neurons co-expressing CBS and c-Fos,and the injection of NaHS into the NTS can suppress gastric motility in rats.This effect may be mediated by activating TRPV1 and NK1 receptors via the NF-κB channel. 展开更多
关键词 Nucleus tractus solitarius hydrogen sulfide Gastric motility Nuclear factor kappa-B Transient receptor potential vanilloid 1
下载PDF
Effect of Exogenous Hydrogen Sulfide(H_2S) on the Electrocardiogram(ECG) of Rats Generally Anaesthetized by Zoletil
13
作者 冯国峰 冯秀晶 +3 位作者 张卓 梁新江 赵晓红 范宏刚 《Agricultural Science & Technology》 CAS 2016年第8期1896-1899,共4页
Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in recent years, and plays an important physiological role in the cardivascular system. To explore the effects of different doses of exogenou... Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in recent years, and plays an important physiological role in the cardivascular system. To explore the effects of different doses of exogenous H2S on the electrocardiogram (ECG) of rats generally anesthetized by zoletil, different doses of NariS solution were used for the intervention of intraperitoneal injection 20 rain before the zoletil anesthesia. The ECGs of rats from each treatment group during the time range of 10^th-50^th min were determined under general anesthesia, and then were compared with those from the control group. The results showed that exogenous H2S could significantly reduce the Q-T interval time limit, thus played a role in slowing tachycardia or arrhythmia and other anomalies, thereby protecting the heart. S-T segment and T segment evaluation values were significantly reduced, which might be associated with bradycardia. 展开更多
关键词 hydrogen sulfide (H2S) Electrocardiogram (ECG) Zoletil Anethesia Cardiovascular system
下载PDF
Research Development of Control Technology of Hydrogen Sulfide in Biogas Slurry
14
作者 吴荣 刘善江 《Agricultural Science & Technology》 CAS 2017年第2期321-324,共4页
In order to provide help for the accurate application of biogas slurry in the field, the application of biogas slurry and control technology of hydrogen sulfide in biogas slurry were reviewed. Results of recent resear... In order to provide help for the accurate application of biogas slurry in the field, the application of biogas slurry and control technology of hydrogen sulfide in biogas slurry were reviewed. Results of recent researches suggested that source control and end-treatment were the two measures to remove hydrogen sulfide in biogas slurry, including physical method, chemical method and biological method. Some conventional deodorizing methods were introduced and compared. 展开更多
关键词 Biogas slurry APPLICATION DEODORIZATION hydrogen sulfide TECHNOLOGY
下载PDF
Hydrogen Sulfide May Function Downstream of Nitric Oxide in Ethylene-Induced Stomatal Closure in Vicia faba L. 被引量:12
15
作者 LIU Jing HOU Zhi-hui +2 位作者 LIU Guo-hua HOU Li-xia LIU Xin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第10期1644-1653,共10页
Pharmacological, laser scanning confocal microscopic (LSCM), and spectrophotographic approaches were used to study the roles of hydrogen sulfide (H2S) and nitric oxide (NO) in signaling transduction of stomatal ... Pharmacological, laser scanning confocal microscopic (LSCM), and spectrophotographic approaches were used to study the roles of hydrogen sulfide (H2S) and nitric oxide (NO) in signaling transduction of stomatal movement in response to ethylene in Viciafaba L. Ethylene treatment resulted in the dose-dependent stomatal closure under light, and this effect was blocked by the inhibitors of H2S biosynthesis in V. faba L. Additionally, ethylene induces H2S generation and increases L-/D-cysteine desulfhydrase (pyridoxalphosphate-dependent enzyme) activity in leaves of V. faba L. Inhibitors of H2S biosynthesis have no effect on the ethylene-induced stomatal closure, NO accumulation, and nitrate reductase (NR) activity in guard cells or leaves of II. faba L. Moreover, the ethylene-induced increase of H2S levels and L-/D- cysteine desulfhydrase activity declined when NO generation was inhibited. Therefore, we conclude that H2S and NO probably are involved in the signal transduction pathway of ethylene-induced stomatal closure. H2S may represent a novel component downstream of NO in the ethylene-induced stomatal movement in V. faba L. 展开更多
关键词 hydrogen sulfide nitric oxide ETHYLENE stomatal closure Vicia faba L.
下载PDF
Kinetics of hydrogen sulfide decomposition in a DBD plasma reactor operated at high temperature 被引量:7
16
作者 E.Linga Reddy J.Karuppiah Ch.Subrahmanyam 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第3期382-386,共5页
The present study investigates the kinetics of hydrogen sulfide (H2S) decomposition into hydrogen and sulfur carded out in a nonthermal plasma dielectric barrier discharge (NTP-DBD) reactor operated at ,-430 K for... The present study investigates the kinetics of hydrogen sulfide (H2S) decomposition into hydrogen and sulfur carded out in a nonthermal plasma dielectric barrier discharge (NTP-DBD) reactor operated at ,-430 K for in situ removal of sulfur condensed inside the reactor walls. The dissociation of H2S was primarily initiated by the excitation of carder gas (At) through electron collisions which appeared to be the rate determining step. The experiments were carded out with initial concentration of H2S varied between 5 and 25 vol% at 150 mL/min (at standard temperature and pressure) flow rate in the input power range of 0.5 to 2 W. The reaction rate model based on continuous stirred tank reactor (CSTR) model failed to explain the global kinetics of H2S decomposition, probably due to the multiple complex reactions involved in H2S decomposition, whereas Michaelis-Menten model was satisfactory. Typical results indicated that the reaction order approached zero with increasing inlet concentration. 展开更多
关键词 dielectric barriar discharge hydrogen sulfide KINETICS temperature
下载PDF
Endogenous hydrogen sulfide and ERK1/2-STAT3 signaling pathway may participate in the association between homocysteine and hypertension 被引量:8
17
作者 Lin SHI Xiao-Yun LIU +4 位作者 Zhi-Gang HUANG Zhi-Yi MA Yang XI Lu-Yan WANG Ning-Ling SUN 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2019年第11期822-834,共13页
Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical... Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical data of primary hypertensive patients admitted to our hospital.Secondly,we explored a rat model to study the effect of Hcy on blood pressure and the role of H2S.An hyperhomocysteinemia(HHcy)rat model was induced to explore the effect of Hcy on blood pressure and the possible mechanism.We carried out tissue histology,extraction and examination of RNA and protein.Finally,we conducted cell experiments to determine a likely mechanism through renin-angiotensin-aldosterone system(RAAS)and extracellular signal-regulated kinase 1/2(ERK1/2)signaling pathway.Results In primary hypertensive inpatients with HHcy,blood pressure was significantly higher as compared with inpatient counterparts lacking HHcy.In the rat model,blood pressure of the Wistar rats was significantly increased with increases in serum Hcy levels and decreased after folate treatment.Angiotensin converting enzyme 1(ACE1)expression in the Wistar Hcy group was enhanced comparing to controls,but was decreased in the Wistar folate group.Angiotensin II receptor type 1(AGTR1)levels in the kidney tissue increased in the Wistar folate group.Both serum H2S and kidney cystathionineγ-lyase decreased with elevated levels of serum Hcy.In vitro,increased concentrations and treatment times for Hcy were associated with increased expression of collagen type 1 and AGTR1.This dose and time dependent response was also observed for p-STAT3 and p-ERK1/2 expression.Conclusion Endogenous H2S might mediate the process of altered blood pressure in response to changes in serum Hcy levels,in a process that is partly dependent on activated RAAS and ERK1/2-STAT3 signaling pathway. 展开更多
关键词 ANGIOTENSIN CONVERTING ENZYME 1 Blood pressure ERK1/2-STAT3 signaling pathway HOMOCYSTEINE hydrogen sulfide
下载PDF
Protective effect of hydrogen sulfide on oxidative stress-induced neurodegenerative diseases 被引量:10
18
作者 Rubaiya Tabassum Na Young Jeong Junyang Jung 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第2期232-241,共10页
Hydrogen sulfide is an antioxidant molecule that has a wide range of biological effects against oxidative stress. Balanced oxidative stress is also vital for maintaining cellular function in biological system, where r... Hydrogen sulfide is an antioxidant molecule that has a wide range of biological effects against oxidative stress. Balanced oxidative stress is also vital for maintaining cellular function in biological system, where reactive oxygen species are the main source of oxidative stress. When the normal redox balance is disturbed, deoxyribonucleic acid, lipid, and protein molecules are oxidized under pathological conditions, like diabetes mellitus that leads to diabetic peripheral neuropathy. In diabetes mellitus-induced diabetic peripheral neuropathy, due to hyperglycemia, pancreatic beta cell(β cell) shows resistance to insulin secretion. As a consequence, glucose metabolism is disturbed in neuronal cells which are distracted from providing proper cell signaling pathway. Not only diabetic peripheral neuropathy but also other central damages occur in brain neuropathy. Neurological studies regarding type 1 diabetes mellitus patients with Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis have shown changes in the central nervous system because high blood glucose levels(HbA1 c) appeared with poor cognitive function. Oxidative stress plays a role in inhibiting insulin signaling that is necessary for brain function. Hydrogen sulfide exhibits antioxidant effects against oxidative stress, where cystathionine β synthase, cystathionine γ lyase, and 3-mercaptopyruvate sulfurtransferase are the endogenous sources of hydrogen sulfide. This review is to explore the pathogenesis of diabetes mellitus-induced diabetic peripheral neuropathy and other neurological comorbid disorders under the oxidative stress condition and the anti-oxidative effects of hydrogen sulfide. 展开更多
关键词 Alzheimer's DISEASE amyotrophic lateral SCLEROSIS antioxidant diabetic peripheral NEUROPATHY DNA oxidation hydrogen sulfide mitochondrial dysfunction oxidative stress Parkinson's DISEASE reactive oxygen species
下载PDF
Biological removal of air loaded with a hydrogen sulfide and ammonia mixture 被引量:6
19
作者 CHENYing-xu YINJun FANGShi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第4期656-661,共6页
The nuisance impact of air pollutant emissions from wastewater pumping stations is a major issue of concern to China. Hydrogen sulfide and ammonia are commonly the primary odor and are important targets for removal. A... The nuisance impact of air pollutant emissions from wastewater pumping stations is a major issue of concern to China. Hydrogen sulfide and ammonia are commonly the primary odor and are important targets for removal. An alternative control technology, biofiltration, was studied. The aim of this study is to investigate the potential of unit systems packed with compost in terms of ammonia and hydrogen sulfide emissions treatment, and to establish optimal operating conditions for a full-scale conceptual design. The laboratory scale biofilter packed with compost was continuously supplied with hydrogen sulfide and ammonia gas mixtures. A volumetric load of less than 150 gH 2S/(m3·d) and 230 gNH 3/(m3·d) was applied for about fifteen weeks. Hydrogen sulfide and ammonia elimination occurred in the biofilter simultaneously. The removal efficiency, removal capacity and removal kinetics in the biofilter were studied. The hydrogen sulfide removal efficiency reached was very high above 99%, and ammonia removal efficiency was about 80%. Hydrogen sulfide was oxidized into sulphate. The ammonia oxidation products were nitrite and nitrate. Ammonia in the biofilter was mainly removed by adsorption onto the carrier material and by absorption into the water fraction of the carrier material. High percentages of hydrogen sulfide or ammonia were oxidized in the first section of the column. Through kinetics analysis, the presence of ammonia did not hinder the hydrogen sulfide removal. According to the relationship between pressure drop and gas velocity for the biofilter and Reynolds number, non-Darcy flow can be assumed to represent the flow in the medium. 展开更多
关键词 biological removal hydrogen sulfide ammonia mixture
下载PDF
Hydrogen sulfide protects against amyloid beta-peptide induced neuronal injury via attenuating inflammatory responses in a rat model 被引量:10
20
作者 Hao Fan YuGuo +5 位作者 Xiaoyan Liang Yibiao Yuan Xiaohong Qi Min Wang Jianhua Ma Hong Zhou 《The Journal of Biomedical Research》 CAS 2013年第4期296-304,共9页
Neuroinflammation has been recognized to play a critical role in the pathogenesis of Alzheimer's disease (AD), which is pathologically characterized by the accumulation of senile plaques containing activated microg... Neuroinflammation has been recognized to play a critical role in the pathogenesis of Alzheimer's disease (AD), which is pathologically characterized by the accumulation of senile plaques containing activated microglia and amyloid β-peptides (Aβ). In the present study, we examined the neuroprotective effects of hydrogen sulfide (H2S) on neuroinflammation in rats with Aβ1-40 hippocampal injection. We found that Aβ-induced rats exhibited a disorder of pyramidal cell layer arrangement, and a decrease of mean pyramidal cell number in the CA1 hippocampal region compared with those in sham operated rats. NaHS (a donor of H2S, 5.6 mg/kg/d, i.p.) treatment for 3 weeks rescued neuronal cell death significantly. Moreover, we found that H2S dramatically suppressed the release of TNF-α, IL-1β and IL-6 in the hippocampus. Consistently, both immunohistochemistry and Western blotting assays showed that H2S inhibited the upregulation of COX-2 and the activation of NF-κB in the hippocampus. In conclusion, our data indicate that H2S suppresses neuroinflammation via inhibition of the NF-κB activation pathway in the Aβ-induced rat model and has potential value for AD therapy. 展开更多
关键词 Alzheimer's disease hydrogen sulfide CYCLOOXYGENASE-2 nuclear factor-κB (NF-κB) AMYLOID
下载PDF
上一页 1 2 249 下一页 到第
使用帮助 返回顶部