In present work,Fe-3%Si alloy specimens with various degrees of cold working and various grain sizes were chosen to determine the effect of cold working and grain sizes on the hydrogen diffusivities by electrochemical...In present work,Fe-3%Si alloy specimens with various degrees of cold working and various grain sizes were chosen to determine the effect of cold working and grain sizes on the hydrogen diffusivities by electrochemical permeation method and the mechanism of hydrogen trapping by dis- ocations and grain boundaries is discussed.展开更多
An investigation of the phenomenon of hydrogen trapping at grain boundaries in 18 Ni maraging steel has been carried out by the thermal hydrogen evolution technique.Grain boundary on- ly acts as a trapping site of hyd...An investigation of the phenomenon of hydrogen trapping at grain boundaries in 18 Ni maraging steel has been carried out by the thermal hydrogen evolution technique.Grain boundary on- ly acts as a trapping site of hydrogen at low temper- ature region,and the peak of its hydrogen evolution from it is observed at 405K with 3.00K/rain heat- ing rate and with specimen of 0.55mm thick.The trap activation energy of hydrogen escaped from grain boundary is estimated as 14.2kJ/mol. Hydrogen trapping at grain boundary is mainly as sociated with segregated hydrogen by impurities, and its behaviour is primarily the interaction be- tween hydrogen and the hydrostatic stress field of the grain boundary.展开更多
This work investigated the effect of pre-strain and microstructures and their interactions on hydrogen trapping behaviors in case of 1-GPa high-strength martensitic steel Fe-0.05C-0.30Si-1.10Mn-3.50Ni-0.53Cr-0.50Mo-0....This work investigated the effect of pre-strain and microstructures and their interactions on hydrogen trapping behaviors in case of 1-GPa high-strength martensitic steel Fe-0.05C-0.30Si-1.10Mn-3.50Ni-0.53Cr-0.50Mo-0.03 V(wt%).We found that the trapped reversible and trapped irreversible hydrogen contents increased significantly after applying a pre-strain of 5%,with an increase in the trapped reversible hydrogen content from 0.6 ppm in the original sample to 2.1 ppm.The hydrogen desorption activation energy also showed a slight increase.The microstructural evolution revealed that the concomitant dislocation cell-twin duplex microstructure with high-density tangled dislocations after pre-strain substantially increased the trapped reversible hydrogen contents.Additionally,the tangled dislocations pinned by the nanoprecipitates acted as deep irreversible hydrogen traps,increasing the trapped hydrogen at high temperatures after applying 5%pre-strain.These findings provide an expanded understanding of the hydrogen trapping behaviors of pre-strained microstructures.展开更多
ydrogen embrittlement(HE)seriously restricts the service safety of structural metallic materials applicate in aerospace,ocean,and transportation.Recent studies aiming at increasing the HE-resistance have been focusing...ydrogen embrittlement(HE)seriously restricts the service safety of structural metallic materials applicate in aerospace,ocean,and transportation.Recent studies aiming at increasing the HE-resistance have been focusing on trapping diffusible H atoms by inherent microstructural features in materials.Alloying-induced compositional complexities,including different types of solute atoms,lattice chemical heterogeneities,and carbide precipitates,have attracted research efforts regarding the H trapping capabilities and potential to reduce the susceptibility to HE.In this paper,we review recent progress in exploiting compositional complexities to regulate the hydrogen trapping characteristics and mechanical properties in H-containing environments.The focus is placed on results and insights from ab initio calculations based on density functional theory(DFT).Quantitative predictions of trapping parameters and atomic scale details that are hardly to be gained through traditional experimental characterizations are provided.Additionally,we overview the electronic/atomistic mechanisms of H trapping energetics in metallic materials.Finally,we propose some key challenges and prospects in simulation of defect interactions,interpretation of experimental characterizations,and developing microstructure-based H diffusion prediction models.For the applications of first principle calculations,we illustrate how the DFT data can complement experimental characterizations to guide composition and microstructure design for better HE-resistant materials.展开更多
Given the carbon peak and carbon neutrality era,there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance.This is crucial in enhancing toughness and ensuring the utilizat...Given the carbon peak and carbon neutrality era,there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance.This is crucial in enhancing toughness and ensuring the utilization of hydrogen in emerging iron and steel materials.Simultaneously,the pursuit of enhanced metallic materials presents a cross-disciplinary scientific and engineering challenge.Developing high-strength,toughened steel with both enhanced strength and hydrogen embrittlement(HE)resistance holds significant theoretical and practical implications.This ensures secure hydrogen utilization and further carbon neutrality objectives within the iron and steel sector.Based on the design principles of high-strength steel HE resistance,this review provides a comprehensive overview of research on designing surface HE resistance and employing nanosized precipitates as intragranular hydrogen traps.It also proposes feasible recommendations and prospects for designing high-strength steel with enhanced HE resistance.展开更多
The assumption of the local equilibrium of hydrogen distribution in metals[1]was used in the model formerly developed[2]to describe the diffu- sion of hydrogen in metals.From the assumption a direct relationship betwe...The assumption of the local equilibrium of hydrogen distribution in metals[1]was used in the model formerly developed[2]to describe the diffu- sion of hydrogen in metals.From the assumption a direct relationship between the hydrogen diffusivity and the hydrogen concentration in metals is estab- lished as D=D_o/{1+N_x(k/p)/[1+C(k/p)]} The comparison between the two results drawn from the assumption of equilibrium and the dynam- ics of hydrogen trapping[3]was also presented.The computation results well explained the scattering phenomenon existed in hydrogen diffusion data and suggested that the experimental conditions should be identical for the study of hydrogen permeation in metals.展开更多
The interaction of hydrogen with interface between the precipitates and the martensitie matrix in 18Ni maraging steel has been studied by means of thermal evolution hydrogen technique us- ing gas chromatograph as hydr...The interaction of hydrogen with interface between the precipitates and the martensitie matrix in 18Ni maraging steel has been studied by means of thermal evolution hydrogen technique us- ing gas chromatograph as hydrogen detector.An evolution rate peak has been observed at 451 K.The height of the peak relates to the amount and distribution of the precipitates.The activation energy for hydrogen escaping from the trap sites is 23.2 kJ/mol.展开更多
Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large...Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources,due to its capacity to address challenges associated with the intermittent nature of renewable energy sources,ensuring a steady and reliable energy supply.Leveraging the existing infrastructure and well-characterized geological formations,depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation.However,significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation.Hydrogen deliverability,hydrogen trapping,and the equation of state are key areas with limited understanding.This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs;it then provides a high-level risk assessment and an overview of the techno-economics of UHS.The significance of this review lies in its consolidation of current knowledge,highlighting unresolved issues and proposing areas for future research.Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape.Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier.In addition,this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies.展开更多
The hydrogen embrittlement(HE)fracture of advanced high-strength steels used in lightweight automobiles has received increasing public attention.The source,transmission,and movement of hydrogen,characterization parame...The hydrogen embrittlement(HE)fracture of advanced high-strength steels used in lightweight automobiles has received increasing public attention.The source,transmission,and movement of hydrogen,characterization parameters,and test methods of HE,as well as the characteristics and path of HE fractures,are introduced.The mechanisms and modes of crack propagation of HE and hydrogen-induced delayed fracture are reviewed.The recent progress surrounding micro and macro typical fracture characteristics and the influencing factors of HE are discussed.Finally,methods for improving HE resistance can be summarized as follows:(1)reducing crystalline grain and inclusion sizes(oxides,sulfides,and titanium nitride),(2)controlling nano-precipitates(niobium carbide,titanium carbide,and composite precipitation),and(3)increasing residual austenite content under the reasonable tension strength of steel.展开更多
The permeability and diffusivity of hydrogen in directionally solidified polycrystalline and single crystal nickel foils were measured by gas permeation method.The results showed that both hydrogen diffusivity and per...The permeability and diffusivity of hydrogen in directionally solidified polycrystalline and single crystal nickel foils were measured by gas permeation method.The results showed that both hydrogen diffusivity and permeability were higher in directionally solidified nickel specimen than those in single crystal one at the temperature ranging from 300 to480 °C,and confirmed the existence of short-circuit diffusion along the grain boundaries(GBs) in the directionally solidified nickel.The results suggested that the rapid diffusion along GBs was more obviously characterized in terms of higher permeability rather than higher diffusivity.The contribution of grain boundary to hydrogen transportation was represented by the differences of diffusivity(and permeability) in single crystal nickel and directionally solidified nickel.By modifying the Fick's first diffusion law and counting the grain boundary density,the hydrogen diffusivity and permeability of rapid diffusion along GBs were calculated.The results suggested both the diffusivity and permeability fit the Arrhenius relationship well at different temperature.展开更多
A modelling suite for hydrogen transport during electrochemical permeation, degassing and thermal desorption spectroscopy is presented. The approach is based on Fick's diffusion laws, where the initial concentration ...A modelling suite for hydrogen transport during electrochemical permeation, degassing and thermal desorption spectroscopy is presented. The approach is based on Fick's diffusion laws, where the initial concentration and diffusion coefficients depend on microstructure and charging conditions. The evolution equations are shown to reduce to classical models for hydrogen diffusion and thermal desorption spectroscopy. The number density of trapping sites is found to be proportional to the mean spacing of each microstructural feature, including dislocations, grain boundaries and various precipitates. The model is validated with several steel grades and polycrystalline nickel for a wide range of processing conditions and microstructures. A systematic study of the factors affecting hydrogen mobility in martensitic steels showed that dislocations control the effective diffusion coefficient of hydrogen. However,they also release hydrogen into the lattice more rapidly than other kind of traps. It is suggested that these effects contribute to the increased susceptibility to hydrogen embrittlement in martensitic and other high-strength steels. These results show that the methodology can be employed as a tool for alloy and process design, and that dislocation kinematics play a crucial role in such design.展开更多
Recently the automotive industry has been confronted with the phenomenon of delayed fracture.This phenomenon was not relevant in earlier years since the strength level of the steels was generally below a critical leve...Recently the automotive industry has been confronted with the phenomenon of delayed fracture.This phenomenon was not relevant in earlier years since the strength level of the steels was generally below a critical level.However,delayed fracture is not necessarily related to an absolute strength value but rather to microstructural features as well as pre-existing micro-damage in the material that are likely to occur in ultrahigh strength steels.Niobium microalloying in combination with appropriate processing can effectively help to improve the resistance against delayed fracturing in such steels.The paper outlines a strategy how to achieve this based on microstructural control and hydrogen trapping.展开更多
This work is focused on the combination of two building-blocks, nanocrystalline TiO2 particles and polyaniline conductive films (PAni). The preparation of new nanostructured composite materials, displaying electron-...This work is focused on the combination of two building-blocks, nanocrystalline TiO2 particles and polyaniline conductive films (PAni). The preparation of new nanostructured composite materials, displaying electron- and proton-conductive properties, to be used for the fabrication of new and superior energy storage devices was envisaged. The semiconducting TiO2 nanoparticles were obtained by means of a hydrothermal route. The PAni films were prepared on glassy carbon electrodes by electrochemical polymerization, under potential dynamic conditions. After characterization by X-ray diffraction, transmission electron microscopy or scanning electron microscopy and electrochemical techniques, the nanocrystalline particles were immobilized in the polymer matrix. The incorporation of the TiO2 was achieved using two distinct approaches: during the polymer growth or by deposition over previously prepared PAni films. The results demonstrate that the PAni morphology depends on the experimental conditions used during the polymer growth. After TiO2 immobilization, the best electrochemical response was obtained for the nanocomposite structure produced through the TiO2 incorporation after the PAni film synthesis. The modified electrodes were structurally and morphologically characterized and their electro-catalytic activity towards the hydrogen evolution reaction was analyzed. A new electrochemical performance related with the oxidation of molecular hydrogen entrapped in the PAni-TiO2 matrix was observed for the modified electrode after TiO2 incorporation. This behavior can be directly associated with the synergetic combination of the TiO2 and PAni, and is dependent on the amount of the semiconductor.展开更多
文摘In present work,Fe-3%Si alloy specimens with various degrees of cold working and various grain sizes were chosen to determine the effect of cold working and grain sizes on the hydrogen diffusivities by electrochemical permeation method and the mechanism of hydrogen trapping by dis- ocations and grain boundaries is discussed.
文摘An investigation of the phenomenon of hydrogen trapping at grain boundaries in 18 Ni maraging steel has been carried out by the thermal hydrogen evolution technique.Grain boundary on- ly acts as a trapping site of hydrogen at low temper- ature region,and the peak of its hydrogen evolution from it is observed at 405K with 3.00K/rain heat- ing rate and with specimen of 0.55mm thick.The trap activation energy of hydrogen escaped from grain boundary is estimated as 14.2kJ/mol. Hydrogen trapping at grain boundary is mainly as sociated with segregated hydrogen by impurities, and its behaviour is primarily the interaction be- tween hydrogen and the hydrostatic stress field of the grain boundary.
基金The authors acknowledge the financial support received from the National Natural Science Foundation of China(Nos.52201060,51922002,and 52001182)the China Postdoctoral Science Foundation(Nos.BX20220035 and 2022M710347)the Science Center for Gas Turbine Project(No.P2022-B-IV-008-001).
文摘This work investigated the effect of pre-strain and microstructures and their interactions on hydrogen trapping behaviors in case of 1-GPa high-strength martensitic steel Fe-0.05C-0.30Si-1.10Mn-3.50Ni-0.53Cr-0.50Mo-0.03 V(wt%).We found that the trapped reversible and trapped irreversible hydrogen contents increased significantly after applying a pre-strain of 5%,with an increase in the trapped reversible hydrogen content from 0.6 ppm in the original sample to 2.1 ppm.The hydrogen desorption activation energy also showed a slight increase.The microstructural evolution revealed that the concomitant dislocation cell-twin duplex microstructure with high-density tangled dislocations after pre-strain substantially increased the trapped reversible hydrogen contents.Additionally,the tangled dislocations pinned by the nanoprecipitates acted as deep irreversible hydrogen traps,increasing the trapped hydrogen at high temperatures after applying 5%pre-strain.These findings provide an expanded understanding of the hydrogen trapping behaviors of pre-strained microstructures.
基金Y.Mao acknowledges the support from the Yunnan Science and Technology Projects(Grant Nos.202002AB080001-6,202205AF150020 and 202203ZA080002)Z.B.Liu acknowledges the support from the National High-tech R&D Program(Grant No.YE20T60400B)K.Shen acknowledges the support from the National Natural Science Foundation of China(Grant No.11604306).
文摘ydrogen embrittlement(HE)seriously restricts the service safety of structural metallic materials applicate in aerospace,ocean,and transportation.Recent studies aiming at increasing the HE-resistance have been focusing on trapping diffusible H atoms by inherent microstructural features in materials.Alloying-induced compositional complexities,including different types of solute atoms,lattice chemical heterogeneities,and carbide precipitates,have attracted research efforts regarding the H trapping capabilities and potential to reduce the susceptibility to HE.In this paper,we review recent progress in exploiting compositional complexities to regulate the hydrogen trapping characteristics and mechanical properties in H-containing environments.The focus is placed on results and insights from ab initio calculations based on density functional theory(DFT).Quantitative predictions of trapping parameters and atomic scale details that are hardly to be gained through traditional experimental characterizations are provided.Additionally,we overview the electronic/atomistic mechanisms of H trapping energetics in metallic materials.Finally,we propose some key challenges and prospects in simulation of defect interactions,interpretation of experimental characterizations,and developing microstructure-based H diffusion prediction models.For the applications of first principle calculations,we illustrate how the DFT data can complement experimental characterizations to guide composition and microstructure design for better HE-resistant materials.
基金the National Key Research and Development Program of China(No.2022YFB3709000)the National Natural Science Foundation of China(Nos.52201060 and 51922002)+2 种基金the China Postdoctoral Science Foundation(Nos.BX20220035 and 2022M710347)Science Center for Gas Turbine Project(No.P2022-B-IV-008-001)the Open Fund of State Key Laboratory of New Metal Materials,University of Science and Technology Beijing(No.2022Z-18)。
文摘Given the carbon peak and carbon neutrality era,there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance.This is crucial in enhancing toughness and ensuring the utilization of hydrogen in emerging iron and steel materials.Simultaneously,the pursuit of enhanced metallic materials presents a cross-disciplinary scientific and engineering challenge.Developing high-strength,toughened steel with both enhanced strength and hydrogen embrittlement(HE)resistance holds significant theoretical and practical implications.This ensures secure hydrogen utilization and further carbon neutrality objectives within the iron and steel sector.Based on the design principles of high-strength steel HE resistance,this review provides a comprehensive overview of research on designing surface HE resistance and employing nanosized precipitates as intragranular hydrogen traps.It also proposes feasible recommendations and prospects for designing high-strength steel with enhanced HE resistance.
文摘The assumption of the local equilibrium of hydrogen distribution in metals[1]was used in the model formerly developed[2]to describe the diffu- sion of hydrogen in metals.From the assumption a direct relationship between the hydrogen diffusivity and the hydrogen concentration in metals is estab- lished as D=D_o/{1+N_x(k/p)/[1+C(k/p)]} The comparison between the two results drawn from the assumption of equilibrium and the dynam- ics of hydrogen trapping[3]was also presented.The computation results well explained the scattering phenomenon existed in hydrogen diffusion data and suggested that the experimental conditions should be identical for the study of hydrogen permeation in metals.
文摘The interaction of hydrogen with interface between the precipitates and the martensitie matrix in 18Ni maraging steel has been studied by means of thermal evolution hydrogen technique us- ing gas chromatograph as hydrogen detector.An evolution rate peak has been observed at 451 K.The height of the peak relates to the amount and distribution of the precipitates.The activation energy for hydrogen escaping from the trap sites is 23.2 kJ/mol.
基金supporting this work and funding research through the project Enabling Large-Scale Hydrogen Underground Storage in Porous Media(21.RP2.0091)。
文摘Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources.Underground hydrogen storage(UHS)in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources,due to its capacity to address challenges associated with the intermittent nature of renewable energy sources,ensuring a steady and reliable energy supply.Leveraging the existing infrastructure and well-characterized geological formations,depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation.However,significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation.Hydrogen deliverability,hydrogen trapping,and the equation of state are key areas with limited understanding.This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs;it then provides a high-level risk assessment and an overview of the techno-economics of UHS.The significance of this review lies in its consolidation of current knowledge,highlighting unresolved issues and proposing areas for future research.Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape.Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier.In addition,this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies.
基金This work was financially supported by the State Key Laboratory of Vehicle NVH and Safety Technology(NVHSKL-202104)the innovation research group of universities in Chongqing(CXQT21030,CXQT19031).
文摘The hydrogen embrittlement(HE)fracture of advanced high-strength steels used in lightweight automobiles has received increasing public attention.The source,transmission,and movement of hydrogen,characterization parameters,and test methods of HE,as well as the characteristics and path of HE fractures,are introduced.The mechanisms and modes of crack propagation of HE and hydrogen-induced delayed fracture are reviewed.The recent progress surrounding micro and macro typical fracture characteristics and the influencing factors of HE are discussed.Finally,methods for improving HE resistance can be summarized as follows:(1)reducing crystalline grain and inclusion sizes(oxides,sulfides,and titanium nitride),(2)controlling nano-precipitates(niobium carbide,titanium carbide,and composite precipitation),and(3)increasing residual austenite content under the reasonable tension strength of steel.
基金financially supported by the National Natural Science Foundation of China (No.51071154)
文摘The permeability and diffusivity of hydrogen in directionally solidified polycrystalline and single crystal nickel foils were measured by gas permeation method.The results showed that both hydrogen diffusivity and permeability were higher in directionally solidified nickel specimen than those in single crystal one at the temperature ranging from 300 to480 °C,and confirmed the existence of short-circuit diffusion along the grain boundaries(GBs) in the directionally solidified nickel.The results suggested that the rapid diffusion along GBs was more obviously characterized in terms of higher permeability rather than higher diffusivity.The contribution of grain boundary to hydrogen transportation was represented by the differences of diffusivity(and permeability) in single crystal nickel and directionally solidified nickel.By modifying the Fick's first diffusion law and counting the grain boundary density,the hydrogen diffusivity and permeability of rapid diffusion along GBs were calculated.The results suggested both the diffusivity and permeability fit the Arrhenius relationship well at different temperature.
文摘A modelling suite for hydrogen transport during electrochemical permeation, degassing and thermal desorption spectroscopy is presented. The approach is based on Fick's diffusion laws, where the initial concentration and diffusion coefficients depend on microstructure and charging conditions. The evolution equations are shown to reduce to classical models for hydrogen diffusion and thermal desorption spectroscopy. The number density of trapping sites is found to be proportional to the mean spacing of each microstructural feature, including dislocations, grain boundaries and various precipitates. The model is validated with several steel grades and polycrystalline nickel for a wide range of processing conditions and microstructures. A systematic study of the factors affecting hydrogen mobility in martensitic steels showed that dislocations control the effective diffusion coefficient of hydrogen. However,they also release hydrogen into the lattice more rapidly than other kind of traps. It is suggested that these effects contribute to the increased susceptibility to hydrogen embrittlement in martensitic and other high-strength steels. These results show that the methodology can be employed as a tool for alloy and process design, and that dislocation kinematics play a crucial role in such design.
文摘Recently the automotive industry has been confronted with the phenomenon of delayed fracture.This phenomenon was not relevant in earlier years since the strength level of the steels was generally below a critical level.However,delayed fracture is not necessarily related to an absolute strength value but rather to microstructural features as well as pre-existing micro-damage in the material that are likely to occur in ultrahigh strength steels.Niobium microalloying in combination with appropriate processing can effectively help to improve the resistance against delayed fracturing in such steels.The paper outlines a strategy how to achieve this based on microstructural control and hydrogen trapping.
基金supported by FCT-Fundacao para a Ciencia e Tecnologia under the project PTDC/CTM NAN/113021/2009O.C.Monteiro acknowledges PEst-OE/QUI/UI0612/2013 and Programme Ciencia 2007
文摘This work is focused on the combination of two building-blocks, nanocrystalline TiO2 particles and polyaniline conductive films (PAni). The preparation of new nanostructured composite materials, displaying electron- and proton-conductive properties, to be used for the fabrication of new and superior energy storage devices was envisaged. The semiconducting TiO2 nanoparticles were obtained by means of a hydrothermal route. The PAni films were prepared on glassy carbon electrodes by electrochemical polymerization, under potential dynamic conditions. After characterization by X-ray diffraction, transmission electron microscopy or scanning electron microscopy and electrochemical techniques, the nanocrystalline particles were immobilized in the polymer matrix. The incorporation of the TiO2 was achieved using two distinct approaches: during the polymer growth or by deposition over previously prepared PAni films. The results demonstrate that the PAni morphology depends on the experimental conditions used during the polymer growth. After TiO2 immobilization, the best electrochemical response was obtained for the nanocomposite structure produced through the TiO2 incorporation after the PAni film synthesis. The modified electrodes were structurally and morphologically characterized and their electro-catalytic activity towards the hydrogen evolution reaction was analyzed. A new electrochemical performance related with the oxidation of molecular hydrogen entrapped in the PAni-TiO2 matrix was observed for the modified electrode after TiO2 incorporation. This behavior can be directly associated with the synergetic combination of the TiO2 and PAni, and is dependent on the amount of the semiconductor.