Density functional theory (DFT) calculations on a double hydrogen-bonded dimer of o-hydroxybenzoic acid were carried out at the B3LYP/6-31G* level. The optimized geometry of the dimer closely resembles that of the c...Density functional theory (DFT) calculations on a double hydrogen-bonded dimer of o-hydroxybenzoic acid were carried out at the B3LYP/6-31G* level. The optimized geometry of the dimer closely resembles that of the crystal. The calculated results show that the total energy of the dimer is much lower than the sum energies of the two monomers, and the average strength of the double hydrogen bonds is about 38.37 kJ/mol. In order to probe the origin of the interactions in the dimer, natural bond orbital analyses were performed. The thermodynamic properties of the title compound at different temperatures have also been calculated on the basis of vibrational analyses and ?GT, the change of Gibbs free energy for the aggregation from monomer to the dimmer, is 26.47 kJ/mol at 298.15 K and 0.1 MPa, implying the spontaneous process of forming the dimer. The correlation graphics of S0m, H0m and temperatures is depicted.展开更多
Ab initio method has been employed to investigate the hydrogenbond between two HNCO molecules. Two types of hydrogen-bondings in HNCO dimers have been found, one type is N-H…O, the other is N-H…N. The latter is a li...Ab initio method has been employed to investigate the hydrogenbond between two HNCO molecules. Two types of hydrogen-bondings in HNCO dimers have been found, one type is N-H…O, the other is N-H…N. The latter is a little stabler than that of the former. The stabilization energies of the two types of dimers are estimated to be 13KJ/mol-21KJ/mol.展开更多
Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concern...Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.展开更多
Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocataly...Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocatalysts are rationally developed for nitrates reduction to ammonia,allowing not only to regulate wastewater pollution but also to accomplish carbon-neutral ammonia(NH_(3))synthesis.We preform high-throughput computational screening of thirty-six HOFs with various metals as active sites,denoted as HOF-M1,for nitrate reduction reaction(NO_(3)RR)toward NH_(3).We have implemented a hierarchical four-step screening strategy,and ultimately,HOF-Ti1 was selected based on its exceptional catalytic activity and selectivity in the NO_(3)RR process.Through additional analysis,we discovered that the d band center of the active metal sites serves as an effective parameter for designing and predicting the performance of HOFs in NO_(3)RR.This research not only showcases the immense potential of electrocatalysis in transforming NO_(3)RR into NH_(3)but also provides researchers with a compelling incentive to undertake further experimental investigations.展开更多
Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acce...Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acceptors have emerged as promising materials for achieving highly efficient and stable binary OSCs,while application as third component for ternary OSCs is limited.Here a novelπ-extended giant dimeric acceptor,GDF,is developed based on central Y series core fusion and rigid BDT as linker,and then incorporated into the state-of-the-art PM1:PC6 system to construct ternary OSCs.The GDF has a near planar backbone,resulting in increasedπ-conjugation,excellent crystallinity,and good electron transport capacity.When GDF is introduced into the PM1:PC6 system,it ensues in a cascade like the lowest unoccupied molecular orbitals(LUMO)energy level alignment,a complementary absorption band with PM1 and PC6,higher and balanced hole and electron mobility,slightly smaller domain size,and a higher exciton dissociation probability for PM1:PC6:GDF(1:1.1:0.1)blend film.As a consequence,the PM1:PC6:GDF(1:1.1:0.1)ternary OSC achieves a champion PCE of 19.22%,with a significantly higher open-circuit voltage and short-circuit current density,compared to 18.45%for the PM1:PC6(1:1.2)binary OSC.Our findings show that employing aπ-extended giant dimeric acceptor as a third component significantly improves the photovoltaic performance of ternary OSCs.展开更多
The catalysis technology of propylene dimerization to form 4-methyl-1-pentene(4MP1)using a Cu-K/K_(2)CO_(3) solid base catalyst is a well-known heterogeneous catalytic reaction.In this study,the intrinsic kinetics of ...The catalysis technology of propylene dimerization to form 4-methyl-1-pentene(4MP1)using a Cu-K/K_(2)CO_(3) solid base catalyst is a well-known heterogeneous catalytic reaction.In this study,the intrinsic kinetics of propylene dimerization were studied in a fixed-bed continuous reactor.Internal and external diffusion during the dimerization reaction experiments were eliminated by adjusting the flow rate of the carrier gas and the particle size of the catalyst support.Then,the concentration changes of each substance at the outlet of the catalyst bed under different residence times were investigated.Moreover,the suitable reaction kinetics equations was derived using the Langmuir Hinshelwood-Hougen-Watson kinetic model.Finally,the activation energy for each reaction involved in the dimerization reaction was calculated.The activation energies of 4MP1,branched by-products,and 1-hexene were 115.0,150.8,and 177.4 kJ/mol,respectively.The effect of process conditions on propylene dimerization with solid base catalysts was studied through kinetic model simulation.By comparing the theoretical values obtained from the simulation with the experimental results,the applicability and accuracy of the kinetic model were verified.展开更多
Background: Postpartum hemorrhage (PPH) is the major contributor to maternal mortality and morbidity worldwide as well as in Tanzania. Studies have shown Pre-eclampsia as a risk indicator for Postpartum hemorrhage and...Background: Postpartum hemorrhage (PPH) is the major contributor to maternal mortality and morbidity worldwide as well as in Tanzania. Studies have shown Pre-eclampsia as a risk indicator for Postpartum hemorrhage and D-dimer tends to rise in women with pre-eclampsia. Few studies that have shown the association between D-dimer and PPH have been controversial and differ according to ethnicity and lifestyle. Hence there is no suitable reference interval for D-dimer in predicting Postpartum hemorrhage among women with pre-eclampsia. Broad Objective: This study aimed to assess the association, sensitivity, and specificity of D-dimer as a laboratory predictor of postpartum hemorrhage among women with pre-eclampsia at KCMC hospital. Methodology: This was a hospital-based analytical cross-sectional study conducted at KCMC Hospital in Northern Tanzania from September 2022 to March 2023. A total of 195 women with pre-eclampsia were included in this study. Plasma D-dimer levels were taken from women with pre-eclampsia pre-delivery. Haematocrit was compared before and after delivery, and a fall of 10% was considered as Postpartum hemorrhage together with clinical assessment of the patient. Participants were divided among those who had severe features and those who did not have severe features and were further categorized into those who had PPH and those who did not have PPH. Logistic regression was used to determine the association between D-dimer and PPH adjusting for other factors. The Receiver Operating Curve (ROC) was used to evaluate the predictive value. Results: Higher median D-dimer levels were seen among women who had PPH compared to those who had no PPH. D-dimer was seen to be associated with PPH, thus for every unit increase of µg/ml of D-dimer among women who had pre-eclampsia without severe features there was a 14% significant increase in the odds of having postpartum hemorrhage and a 45% significant increase of having postpartum hemorrhage among those who had pre-eclampsia with severe features. Furthermore, the cut-off point of a D-dimer level of 0.66 µg/ml significantly predicts postpartum hemorrhage with a sensitivity of 75% and specificity of 55%. For those who had no severe features the cut-off point was 0.53 µg/ml with a sensitivity of 95% and specificity of 53%, and for those who had severe features the cut-off point was 3.58 µg/ml with a sensitivity of 50% and specificity of 96%. Conclusion: D-dimer can be used to predict postpartum hemorrhage among pre-eclampsia, especially among those who have severe features. This shows that D-dimer has specificity in predicting PPH in women with pre-eclampsia and can be applied in clinical services to save women from maternal morbidity and mortality. Blood products such as fresh frozen plasma, platelets, and whole blood together with tranexamic acid should be readily available in women with pre-eclampsia especially those with severe features with a D-dimer level of 3.58 µg/ml and above during delivery as they are at high risk of developing PPH.展开更多
The aim of this study was to develop an intravenous clarithromycin lipid emulsion(CLE)with good stability and excellent antibacterial activity. The CLE was prepared by the thinfilm dispersed homogenization method. The...The aim of this study was to develop an intravenous clarithromycin lipid emulsion(CLE)with good stability and excellent antibacterial activity. The CLE was prepared by the thinfilm dispersed homogenization method. The interaction between clarithromycin(CLA) and cholesteryl hemisuccinate(CHEMS) was confirmed by DSC, FT-IR and^1H NMR analysis. The interfacial drug loading, thermal sterilization, freeze–thaw stability, and in vitro and in vivo antibacterial activity were investigated systematically. DSC, FT-IR and^1H NMR spectra showed that CHEMS(CLA: CHEMS, M ratio 1:2) could interact with CLA through H-bonding and a hydrogen-bonded ion pair. The CHEMS was found necessary to maintain the stability of CLE.Ultracentrifugation showed that almost 88% CLA could be loaded into the interfacial layer.The optimized CLE formulation could withstand autoclaving at 121 °C for 10 min and remain stable after three freeze–thaw cycles. The in vitro susceptibility test revealed that the CLA–CHEMS ion-pair and CLE have similar activity to the parent drug against many different bacterial strains. The in vivo antibacterial activity showed that the ED50 of intravenous CLE was markedly lower than that of CLA solution administrated orally. CLE exhibited pronounced antibacterial activity and might be a candidate for a new nanocarrier for CLA with potential advantages over the current commercial formulation.展开更多
A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural a...A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural analysis revealed that the novel compound forms three-dimensional(3D) networks by both π-π stacking and hydrogen-bonding interactions. The crystal data for the complex are a=13.853(3) nm, b=9.6892(19) nm, c=13.732(3) nm, α=90.00°, β=115.52(3)°, γ=90.00°, Z=3, R 1=0.0786, wR 2=0.1522.展开更多
X-ray crystal structures of co-crystals involving tetra-iso-butyl-resorcin[4]arene 1 with both acetone and acetonitrile solvents were reported. The component 1?2(CH3)2CO 2 assembles such that the resorcin[4]arene adop...X-ray crystal structures of co-crystals involving tetra-iso-butyl-resorcin[4]arene 1 with both acetone and acetonitrile solvents were reported. The component 1?2(CH3)2CO 2 assembles such that the resorcin[4]arene adopts a C2v conformation and the acetone serves as hydrogen bond acceptors, forming a 1D hydrogen-bonded polymer. 2 (C50H68O10) crystallizes in the triclinic, space group P1 with a = 10.0440(7), b = 13.7498(9), c = 17.6374(12) ?, α = 77.726(2), β = 86.733(2), γ = 88.634(2)o, V = 2376.1(3) ?3, Dc = 1.159 g/cm3, and Z = 2. The assembly process of component 1?2CH3CN?H2O 3 yields a 2D hydrogen-bonded polymer formed by intermolecular hydrogen bonds between resorcin[4]arene and water molecules. In the case of component 3, the acetonitrile molecule serves as guest inside the bowl of resorcin[4]arene host. 3 (C48H64N2O9) crystallizes in the monoclinic, space group P2/n with a = 13.7570(18), b = 9.0961(12), c = 19.453(3) ?, β = 103.017(3)o, V = 2371.7(5) ?3, Dc = 1.138 g/cm3, and Z = 2.展开更多
The co-crystallization of tetra-iso-butyl-resorcin[4]arene 1 and 2,6-diacetyl- pyridine (Ac2py) from MeCN/CH2Cl2 yielded a multi-component complex 1?Ac2py?2H2O?0.5Me- CN 2, in which the upper rim of 1 is extended su...The co-crystallization of tetra-iso-butyl-resorcin[4]arene 1 and 2,6-diacetyl- pyridine (Ac2py) from MeCN/CH2Cl2 yielded a multi-component complex 1?Ac2py?2H2O?0.5Me- CN 2, in which the upper rim of 1 is extended supramolecularly by way of hydrogen bonds. Complex 2 (C52H66.5N1.5O14) crystallizes in monoclinic, space group P21/m with a = 10.845(9), b = 20.805(17), c = 12.881(11) ?, β = 103.884(19)o, V = 2821(4) ?3, Dc = 1.102 g/cm3 and Z = 2. The molecular structure shows that the two adjacent double-stranded arrays as well as linear and zigzag chains generated from Ac2py and water bridging to two resorcin[4] arene molecules, respectively, facilitate self-inclusion of one-dimensional hydrogen-bonded polymer.展开更多
Density functional theory and time-dependent density-functional theory have been used to investigate the photophysical properties and relaxation dynamics of dimethylaminobenzophe- none (DMABP) and its hydrogen-bonde...Density functional theory and time-dependent density-functional theory have been used to investigate the photophysical properties and relaxation dynamics of dimethylaminobenzophe- none (DMABP) and its hydrogen-bonded DMABP-MeOH dimer. It is found that, in non- polar aprotic solvent, the transitions from So to S1 and S2 states of DMABP have both n→π and π→π* characters, with the locally excited feature mainly located on the C=O group and the partial CT one characterized by electron transfer mainly from the dimethylaminophenyl group to the C=O group. But when the intermolecular hydrogen bond C=O…H-O is formed, the highly polar intramolecular charge transfer character switches over to the first excited state of DMABP-MeOH dimer and the energy difference between the two low- lying electronically excited states increases. To gain insight into the relaxation dynamics of DMABP and DMABP-MeOH dimer in the excited state, the potential energy curves for con- formational relaxation are calculated. The formation of twisted intramolecular charge trans- fer state via diffusive twisting motion of the dimethylamino/dimethylaminophenyl groups is found to be the major relaxation process. In addition, the decay of the Si state of DMABP-MeOH dimer to the ground state, through nonradiative intermolecular hydrogen bond stretching vibrations, is facilitated by the formation of the hydrogen bond between DMABP and alcohols.展开更多
Two new inclusion 1,4-butylenediphosphonates with three-dimensional hydrogen- bonded frameworks have been synthesized and determined by single-crystal X-ray diffraction. In compound 1, the two-dimensional cationic sub...Two new inclusion 1,4-butylenediphosphonates with three-dimensional hydrogen- bonded frameworks have been synthesized and determined by single-crystal X-ray diffraction. In compound 1, the two-dimensional cationic substructures interpenetrate into the anionic framework, and in compound 2, the cations are encapsulated in the three-dimensional framework. Crystal 1 (C14H24N2O8P2) belongs to triclinic, space group P?with a = 9.4645(2), b = 9.6490(2), c = 11.9479(3) ? = 79.7420(10), b = 73.5650(10), = 63.8420(10), V = 937.55(4) 3, Z = 2, Mr = 410.29, Dc = 1.453 g/cm3, m(MoKa) = 0.276 mm-1, F(000) = 432, the final R = 0.0465 and wR = 0.1304 for 3274 independent reflections. Crystal 2 (C18H26N2O10P2) is of monoclinic, space group P21/c with a = 9.7069(12), b = 16.227(2), c = 6.9339(9) ? b = 98.834(3), V = 1079.2(2) ?, Z = 2, Mr = 492.35, Dc = 1.515 g/cm3, m(MoKa) = 0.261 mm-1, F(000) = 516, the final R = 0.0611 and wR = 0.1162 for 1871 independent reflections.展开更多
A zinc(Ⅱ) compound [ZnCl2(mpcm)2](1,mpcm = methyl-3-pyridylcarbamate) was prepared by solvothermal reaction and characterized by elemental analysis,IR spectroscopy,TGA and single-crystal X-ray diffraction.The c...A zinc(Ⅱ) compound [ZnCl2(mpcm)2](1,mpcm = methyl-3-pyridylcarbamate) was prepared by solvothermal reaction and characterized by elemental analysis,IR spectroscopy,TGA and single-crystal X-ray diffraction.The crystal is of monoclinic system,space group P21/n,C14H16ZnCl2N4O4,Mr = 440.58,a = 8.7893(7),b = 24.978(2),c = 9.2510(8),β = 109.318(1)°,V = 1916.6(3)3,Z = 4,θ = 1.63~25.20°,Dc = 1.527 g/cm3,μ = 1.585 mm-1,F(000) = 896,the final R = 0.0255 and wR = 0.0654 for 3080 observed reflections with Ⅰ 〉 2σ(Ⅰ).The zinc atom is four-coordinated by the pyridyl groups of two mpcm ligands and two chloride ions with a tetrahedral geometry.Two [ZnCl2(mpcm)2] subunits are held together by a pair of hydrogen bonds,forming a 32-membered macrocyclic dimer,which is further extended into a 3D tubular structure via hydrogen bonding.展开更多
This paper calculates the molecular structures, infrared, Raman, circular dichroism spectra and optical rotatory powers of some hydrogen-bonded supramolecular systems as a cyclic water trimer, (H2O)3 and its pyramid...This paper calculates the molecular structures, infrared, Raman, circular dichroism spectra and optical rotatory powers of some hydrogen-bonded supramolecular systems as a cyclic water trimer, (H2O)3 and its pyramidal halide complexes, X- (H2O)3 (X= F, Cl, Br, I) with the gradient-corrected density functional theory method at the B3LYP/6- 311++G(2d,2p) and B3LYP/Aug-cc-pVTZ levels. It finds that the complexation of halide anions with the water trimer can efficiently modulate the chirally optical behaviors. The calculated vibrational circular dichroism spectrum illuminates that the vibrational rotational strength of S(+) (H2O)3 mostly originates from the O-H rocking modes, whereas chirality of S(-)-X-(H2O)3 (X = F, Cl, Br, I) has its important origin in the O-H stretching modes. The calculated optical rotatory power demonstrates that S(+) (H2O)3 and S(+)-F-(H2O)3 are positively chiral, whereas S(-)-X-(H2O)3 (X=Cl, Br, I) are negatively chiral. With the polarizable continuum model, calculated bulk solvent effect in the solvents water and carbontetrachloride and argon shows that the positive chirality of S(+)-(H2O)3 is enhanced and the negative chirality of S(-)-X-(H2O)3 (X=Cl, Br, I) and the positive chirality of S(+)-F-(H2O)3 are reduced with an augmentation of the solvent dielectric constant.展开更多
基金This work was supported by the Natural Science Foundation of Shandong Province (No. Y2002B06)
文摘Density functional theory (DFT) calculations on a double hydrogen-bonded dimer of o-hydroxybenzoic acid were carried out at the B3LYP/6-31G* level. The optimized geometry of the dimer closely resembles that of the crystal. The calculated results show that the total energy of the dimer is much lower than the sum energies of the two monomers, and the average strength of the double hydrogen bonds is about 38.37 kJ/mol. In order to probe the origin of the interactions in the dimer, natural bond orbital analyses were performed. The thermodynamic properties of the title compound at different temperatures have also been calculated on the basis of vibrational analyses and ?GT, the change of Gibbs free energy for the aggregation from monomer to the dimmer, is 26.47 kJ/mol at 298.15 K and 0.1 MPa, implying the spontaneous process of forming the dimer. The correlation graphics of S0m, H0m and temperatures is depicted.
文摘Ab initio method has been employed to investigate the hydrogenbond between two HNCO molecules. Two types of hydrogen-bondings in HNCO dimers have been found, one type is N-H…O, the other is N-H…N. The latter is a little stabler than that of the former. The stabilization energies of the two types of dimers are estimated to be 13KJ/mol-21KJ/mol.
基金supported by the National Key Research and Development Program of China(No.2022YFA1504100)the National Natural Science Foundation of China(Nos.22005215,22279089,and 22178251).
文摘Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.
基金financial support from the National Key R&D Program of China(Grant 2022YFA1504000)the National Natural Science Foundation of China(Grants 22125205,22002166,22272176,22072146 and 22002158)+2 种基金the Fundamental Research Funds for the Central Universities(20720220008)the Dalian National Laboratory for Clean Energy(DNL202007,DNL201923)the financial support from the CAS Youth Innovation Promotion(Grant Y201938)。
文摘Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocatalysts are rationally developed for nitrates reduction to ammonia,allowing not only to regulate wastewater pollution but also to accomplish carbon-neutral ammonia(NH_(3))synthesis.We preform high-throughput computational screening of thirty-six HOFs with various metals as active sites,denoted as HOF-M1,for nitrate reduction reaction(NO_(3)RR)toward NH_(3).We have implemented a hierarchical four-step screening strategy,and ultimately,HOF-Ti1 was selected based on its exceptional catalytic activity and selectivity in the NO_(3)RR process.Through additional analysis,we discovered that the d band center of the active metal sites serves as an effective parameter for designing and predicting the performance of HOFs in NO_(3)RR.This research not only showcases the immense potential of electrocatalysis in transforming NO_(3)RR into NH_(3)but also provides researchers with a compelling incentive to undertake further experimental investigations.
基金supported by the Yunnan Fundamental Research Project(202301BF070001-009,KC-22222357)the Sichuan Science and Technology Program(2023NSFSC0990)the School of Materials Science and Engineering,Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications。
文摘Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acceptors have emerged as promising materials for achieving highly efficient and stable binary OSCs,while application as third component for ternary OSCs is limited.Here a novelπ-extended giant dimeric acceptor,GDF,is developed based on central Y series core fusion and rigid BDT as linker,and then incorporated into the state-of-the-art PM1:PC6 system to construct ternary OSCs.The GDF has a near planar backbone,resulting in increasedπ-conjugation,excellent crystallinity,and good electron transport capacity.When GDF is introduced into the PM1:PC6 system,it ensues in a cascade like the lowest unoccupied molecular orbitals(LUMO)energy level alignment,a complementary absorption band with PM1 and PC6,higher and balanced hole and electron mobility,slightly smaller domain size,and a higher exciton dissociation probability for PM1:PC6:GDF(1:1.1:0.1)blend film.As a consequence,the PM1:PC6:GDF(1:1.1:0.1)ternary OSC achieves a champion PCE of 19.22%,with a significantly higher open-circuit voltage and short-circuit current density,compared to 18.45%for the PM1:PC6(1:1.2)binary OSC.Our findings show that employing aπ-extended giant dimeric acceptor as a third component significantly improves the photovoltaic performance of ternary OSCs.
基金supported by the National Natural Science Foundation of China under agreement number 22378026the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality(IDHT20180508).
文摘The catalysis technology of propylene dimerization to form 4-methyl-1-pentene(4MP1)using a Cu-K/K_(2)CO_(3) solid base catalyst is a well-known heterogeneous catalytic reaction.In this study,the intrinsic kinetics of propylene dimerization were studied in a fixed-bed continuous reactor.Internal and external diffusion during the dimerization reaction experiments were eliminated by adjusting the flow rate of the carrier gas and the particle size of the catalyst support.Then,the concentration changes of each substance at the outlet of the catalyst bed under different residence times were investigated.Moreover,the suitable reaction kinetics equations was derived using the Langmuir Hinshelwood-Hougen-Watson kinetic model.Finally,the activation energy for each reaction involved in the dimerization reaction was calculated.The activation energies of 4MP1,branched by-products,and 1-hexene were 115.0,150.8,and 177.4 kJ/mol,respectively.The effect of process conditions on propylene dimerization with solid base catalysts was studied through kinetic model simulation.By comparing the theoretical values obtained from the simulation with the experimental results,the applicability and accuracy of the kinetic model were verified.
文摘Background: Postpartum hemorrhage (PPH) is the major contributor to maternal mortality and morbidity worldwide as well as in Tanzania. Studies have shown Pre-eclampsia as a risk indicator for Postpartum hemorrhage and D-dimer tends to rise in women with pre-eclampsia. Few studies that have shown the association between D-dimer and PPH have been controversial and differ according to ethnicity and lifestyle. Hence there is no suitable reference interval for D-dimer in predicting Postpartum hemorrhage among women with pre-eclampsia. Broad Objective: This study aimed to assess the association, sensitivity, and specificity of D-dimer as a laboratory predictor of postpartum hemorrhage among women with pre-eclampsia at KCMC hospital. Methodology: This was a hospital-based analytical cross-sectional study conducted at KCMC Hospital in Northern Tanzania from September 2022 to March 2023. A total of 195 women with pre-eclampsia were included in this study. Plasma D-dimer levels were taken from women with pre-eclampsia pre-delivery. Haematocrit was compared before and after delivery, and a fall of 10% was considered as Postpartum hemorrhage together with clinical assessment of the patient. Participants were divided among those who had severe features and those who did not have severe features and were further categorized into those who had PPH and those who did not have PPH. Logistic regression was used to determine the association between D-dimer and PPH adjusting for other factors. The Receiver Operating Curve (ROC) was used to evaluate the predictive value. Results: Higher median D-dimer levels were seen among women who had PPH compared to those who had no PPH. D-dimer was seen to be associated with PPH, thus for every unit increase of µg/ml of D-dimer among women who had pre-eclampsia without severe features there was a 14% significant increase in the odds of having postpartum hemorrhage and a 45% significant increase of having postpartum hemorrhage among those who had pre-eclampsia with severe features. Furthermore, the cut-off point of a D-dimer level of 0.66 µg/ml significantly predicts postpartum hemorrhage with a sensitivity of 75% and specificity of 55%. For those who had no severe features the cut-off point was 0.53 µg/ml with a sensitivity of 95% and specificity of 53%, and for those who had severe features the cut-off point was 3.58 µg/ml with a sensitivity of 50% and specificity of 96%. Conclusion: D-dimer can be used to predict postpartum hemorrhage among pre-eclampsia, especially among those who have severe features. This shows that D-dimer has specificity in predicting PPH in women with pre-eclampsia and can be applied in clinical services to save women from maternal morbidity and mortality. Blood products such as fresh frozen plasma, platelets, and whole blood together with tranexamic acid should be readily available in women with pre-eclampsia especially those with severe features with a D-dimer level of 3.58 µg/ml and above during delivery as they are at high risk of developing PPH.
文摘The aim of this study was to develop an intravenous clarithromycin lipid emulsion(CLE)with good stability and excellent antibacterial activity. The CLE was prepared by the thinfilm dispersed homogenization method. The interaction between clarithromycin(CLA) and cholesteryl hemisuccinate(CHEMS) was confirmed by DSC, FT-IR and^1H NMR analysis. The interfacial drug loading, thermal sterilization, freeze–thaw stability, and in vitro and in vivo antibacterial activity were investigated systematically. DSC, FT-IR and^1H NMR spectra showed that CHEMS(CLA: CHEMS, M ratio 1:2) could interact with CLA through H-bonding and a hydrogen-bonded ion pair. The CHEMS was found necessary to maintain the stability of CLE.Ultracentrifugation showed that almost 88% CLA could be loaded into the interfacial layer.The optimized CLE formulation could withstand autoclaving at 121 °C for 10 min and remain stable after three freeze–thaw cycles. The in vitro susceptibility test revealed that the CLA–CHEMS ion-pair and CLE have similar activity to the parent drug against many different bacterial strains. The in vivo antibacterial activity showed that the ED50 of intravenous CLE was markedly lower than that of CLA solution administrated orally. CLE exhibited pronounced antibacterial activity and might be a candidate for a new nanocarrier for CLA with potential advantages over the current commercial formulation.
基金Supported by the National Natural Science Foundation of China(No.2 0 1710 10)
文摘A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural analysis revealed that the novel compound forms three-dimensional(3D) networks by both π-π stacking and hydrogen-bonding interactions. The crystal data for the complex are a=13.853(3) nm, b=9.6892(19) nm, c=13.732(3) nm, α=90.00°, β=115.52(3)°, γ=90.00°, Z=3, R 1=0.0786, wR 2=0.1522.
基金This project was supported by the Key Scientific Research Foundation of State Education Ministry of China (No. 204067)
文摘X-ray crystal structures of co-crystals involving tetra-iso-butyl-resorcin[4]arene 1 with both acetone and acetonitrile solvents were reported. The component 1?2(CH3)2CO 2 assembles such that the resorcin[4]arene adopts a C2v conformation and the acetone serves as hydrogen bond acceptors, forming a 1D hydrogen-bonded polymer. 2 (C50H68O10) crystallizes in the triclinic, space group P1 with a = 10.0440(7), b = 13.7498(9), c = 17.6374(12) ?, α = 77.726(2), β = 86.733(2), γ = 88.634(2)o, V = 2376.1(3) ?3, Dc = 1.159 g/cm3, and Z = 2. The assembly process of component 1?2CH3CN?H2O 3 yields a 2D hydrogen-bonded polymer formed by intermolecular hydrogen bonds between resorcin[4]arene and water molecules. In the case of component 3, the acetonitrile molecule serves as guest inside the bowl of resorcin[4]arene host. 3 (C48H64N2O9) crystallizes in the monoclinic, space group P2/n with a = 13.7570(18), b = 9.0961(12), c = 19.453(3) ?, β = 103.017(3)o, V = 2371.7(5) ?3, Dc = 1.138 g/cm3, and Z = 2.
文摘The co-crystallization of tetra-iso-butyl-resorcin[4]arene 1 and 2,6-diacetyl- pyridine (Ac2py) from MeCN/CH2Cl2 yielded a multi-component complex 1?Ac2py?2H2O?0.5Me- CN 2, in which the upper rim of 1 is extended supramolecularly by way of hydrogen bonds. Complex 2 (C52H66.5N1.5O14) crystallizes in monoclinic, space group P21/m with a = 10.845(9), b = 20.805(17), c = 12.881(11) ?, β = 103.884(19)o, V = 2821(4) ?3, Dc = 1.102 g/cm3 and Z = 2. The molecular structure shows that the two adjacent double-stranded arrays as well as linear and zigzag chains generated from Ac2py and water bridging to two resorcin[4] arene molecules, respectively, facilitate self-inclusion of one-dimensional hydrogen-bonded polymer.
文摘Density functional theory and time-dependent density-functional theory have been used to investigate the photophysical properties and relaxation dynamics of dimethylaminobenzophe- none (DMABP) and its hydrogen-bonded DMABP-MeOH dimer. It is found that, in non- polar aprotic solvent, the transitions from So to S1 and S2 states of DMABP have both n→π and π→π* characters, with the locally excited feature mainly located on the C=O group and the partial CT one characterized by electron transfer mainly from the dimethylaminophenyl group to the C=O group. But when the intermolecular hydrogen bond C=O…H-O is formed, the highly polar intramolecular charge transfer character switches over to the first excited state of DMABP-MeOH dimer and the energy difference between the two low- lying electronically excited states increases. To gain insight into the relaxation dynamics of DMABP and DMABP-MeOH dimer in the excited state, the potential energy curves for con- formational relaxation are calculated. The formation of twisted intramolecular charge trans- fer state via diffusive twisting motion of the dimethylamino/dimethylaminophenyl groups is found to be the major relaxation process. In addition, the decay of the Si state of DMABP-MeOH dimer to the ground state, through nonradiative intermolecular hydrogen bond stretching vibrations, is facilitated by the formation of the hydrogen bond between DMABP and alcohols.
基金This research was supported by the grants of the State Key Laboratory of Structural Chemistry the National misistry of science and technology of china (001CB1089)+1 种基金 the Chinese academy of sciences(CAS) the national Science Foundation of china (2027
文摘Two new inclusion 1,4-butylenediphosphonates with three-dimensional hydrogen- bonded frameworks have been synthesized and determined by single-crystal X-ray diffraction. In compound 1, the two-dimensional cationic substructures interpenetrate into the anionic framework, and in compound 2, the cations are encapsulated in the three-dimensional framework. Crystal 1 (C14H24N2O8P2) belongs to triclinic, space group P?with a = 9.4645(2), b = 9.6490(2), c = 11.9479(3) ? = 79.7420(10), b = 73.5650(10), = 63.8420(10), V = 937.55(4) 3, Z = 2, Mr = 410.29, Dc = 1.453 g/cm3, m(MoKa) = 0.276 mm-1, F(000) = 432, the final R = 0.0465 and wR = 0.1304 for 3274 independent reflections. Crystal 2 (C18H26N2O10P2) is of monoclinic, space group P21/c with a = 9.7069(12), b = 16.227(2), c = 6.9339(9) ? b = 98.834(3), V = 1079.2(2) ?, Z = 2, Mr = 492.35, Dc = 1.515 g/cm3, m(MoKa) = 0.261 mm-1, F(000) = 516, the final R = 0.0611 and wR = 0.1162 for 1871 independent reflections.
基金Supported by the National Natural Science Foundation of China (No. 20872149)
文摘A zinc(Ⅱ) compound [ZnCl2(mpcm)2](1,mpcm = methyl-3-pyridylcarbamate) was prepared by solvothermal reaction and characterized by elemental analysis,IR spectroscopy,TGA and single-crystal X-ray diffraction.The crystal is of monoclinic system,space group P21/n,C14H16ZnCl2N4O4,Mr = 440.58,a = 8.7893(7),b = 24.978(2),c = 9.2510(8),β = 109.318(1)°,V = 1916.6(3)3,Z = 4,θ = 1.63~25.20°,Dc = 1.527 g/cm3,μ = 1.585 mm-1,F(000) = 896,the final R = 0.0255 and wR = 0.0654 for 3080 observed reflections with Ⅰ 〉 2σ(Ⅰ).The zinc atom is four-coordinated by the pyridyl groups of two mpcm ligands and two chloride ions with a tetrahedral geometry.Two [ZnCl2(mpcm)2] subunits are held together by a pair of hydrogen bonds,forming a 32-membered macrocyclic dimer,which is further extended into a 3D tubular structure via hydrogen bonding.
基金Project supported by the Scientific Foundation of Education Department of Yunnan Province of China (Grant No. 07Z11621)the Innovation Foundation for New Researchers in Dali University (Grant No. KY421040)the National Natural Science Foundation of China (Grant No. 20573114)
文摘This paper calculates the molecular structures, infrared, Raman, circular dichroism spectra and optical rotatory powers of some hydrogen-bonded supramolecular systems as a cyclic water trimer, (H2O)3 and its pyramidal halide complexes, X- (H2O)3 (X= F, Cl, Br, I) with the gradient-corrected density functional theory method at the B3LYP/6- 311++G(2d,2p) and B3LYP/Aug-cc-pVTZ levels. It finds that the complexation of halide anions with the water trimer can efficiently modulate the chirally optical behaviors. The calculated vibrational circular dichroism spectrum illuminates that the vibrational rotational strength of S(+) (H2O)3 mostly originates from the O-H rocking modes, whereas chirality of S(-)-X-(H2O)3 (X = F, Cl, Br, I) has its important origin in the O-H stretching modes. The calculated optical rotatory power demonstrates that S(+) (H2O)3 and S(+)-F-(H2O)3 are positively chiral, whereas S(-)-X-(H2O)3 (X=Cl, Br, I) are negatively chiral. With the polarizable continuum model, calculated bulk solvent effect in the solvents water and carbontetrachloride and argon shows that the positive chirality of S(+)-(H2O)3 is enhanced and the negative chirality of S(-)-X-(H2O)3 (X=Cl, Br, I) and the positive chirality of S(+)-F-(H2O)3 are reduced with an augmentation of the solvent dielectric constant.