期刊文献+
共找到5,184篇文章
< 1 2 250 >
每页显示 20 50 100
The role of atomic hydrogen and hydrogen-induced martensites in hydrogen embrittlement of type 304L stainless steel 被引量:1
1
作者 潘川 褚武扬 +3 位作者 李正邦 梁东图 宿彦京 乔利杰 《Science China(Technological Sciences)》 SCIE EI CAS 2002年第2期175-183,共9页
The role of atomic hydrogen and hydrogen-induced martensites in hydrogen embrittlement in slow strain rate tensile tests and hydrogen-induced delayed cracking (HIC) in sustained load tests for type 304 L stainless ste... The role of atomic hydrogen and hydrogen-induced martensites in hydrogen embrittlement in slow strain rate tensile tests and hydrogen-induced delayed cracking (HIC) in sustained load tests for type 304 L stainless steel was quantitatively studied. The results indicated that hydrogen-induced martensites formed when hydrogen concentration C 0 exceeded 30 ppm, and increased with an increase in C 0, i.e. M(vol%)=62–82.5 exp (?C 0/102). The relative plasticity loss caused by the martensites increased linearly with increasing amount of the martensites, i.e. l δ(M), %=0.45 M (vol %)=27.9?37.1 exp(?C0/102). The plasticity loss caused by atomic hydrogen l δ(H) increased with an increase in C 0 and reached a saturation value l δ(H)max=40% when C 0>100 ppm. l δ(H) decreased with an increase in strain rate $\dot \varepsilon $ , i.e. l δ(H), $\% = - 21.9 - 9.9\dot \varepsilon $ , and was zero when $\dot \varepsilon \geqslant \dot \varepsilon _c = 0.032/s$ . HIC under sustained load was due to atomic hydrogen, and the threshold stress intensity for HIC decreased linearly with in C 0, i.e. K IH (Mpam1/2)=91.7?10.1 In C 0 (ppm). The fracture surface of HIC was dimple if K 1 was high or/and C 0 was low, otherwise it was quasi-cleavage. The boundary line between ductile and brittle fracture surface was K 1-54+25exp(?C 0/153)=0. 展开更多
关键词 TYPE 304 L STAINLESS steel hydrogen embrittlement hydrogen-induced cracking hydrogen-induced martensites.
原文传递
Pre-existing orthorhombic embryos-induced hexagonal-orthorhombic martensitic transformation in MnNiSi_(1-x)(CoNiGe)_x alloy
2
作者 张婷婷 龚元元 +1 位作者 鲁子骞 徐锋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期691-699,共9页
The thermal-elastic martensitic transformation from high-temperature Ni_(2)In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely studied in MnMX(M=Ni or Co,and X=Ge or Si)al... The thermal-elastic martensitic transformation from high-temperature Ni_(2)In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely studied in MnMX(M=Ni or Co,and X=Ge or Si)alloys.However,the answer to how the orthorhombic martensite nucleates and grows within the hexagonal parent is still unclear.In this work,the hexagonal-orthorhombic martensitic transformation in a Co and Ge co-substituted MnNiSi is investigated.One can find some orthorhombic laths embedded in the hexagonal parent at a temperature above the martensitic transformation start temperature(M_(s)).With the the sample cooing to M_(s),the laths turn broader,indicating that the martensitic transformation starts from these pre-existing orthorhombic laths.Microstructure observation suggests that these pre-existing orthorhombic laths do not originate from the hexagonal-orthorhombic martensitic transformation because of the difference between atomic occupations of doping elements in the hexagonal parent and those in the preexisting orthorhombic laths.The phenomenological crystallographic theory and experimental investigations prove that the pre-existing orthorhombic lath and generated orthorhombic martensite have the same crystallography relationship to the hexagonal parent.Therefore,the orthorhombic martensite can take these pre-existing laths as embryos and grow up.This work implies that the martensitic transformation in MnNiSi_(1-x)(CoNiGe)_(x) alloy is initiated by orthorhombic embryos. 展开更多
关键词 martensitic transformation MnMX alloy orthorhombic embryo crystallography relationship
下载PDF
Microstructure and martensitic transformation in quaternary NiTiHfV alloy
3
作者 Aleksandr V.SHUITCEV Yi REN +4 位作者 Ze-zhong ZHANG Roman N.VASIN Bin SUN Li LI Yun-xiang TONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3282-3294,共13页
The effect of age hardening on the microstructure,martensitic transformation behavior,and shape memory properties of the(Ni_(50)Ti_(30)Hf_(20))_(95)V_(5)alloy was investigated by scanning electron microscopy,transmiss... The effect of age hardening on the microstructure,martensitic transformation behavior,and shape memory properties of the(Ni_(50)Ti_(30)Hf_(20))_(95)V_(5)alloy was investigated by scanning electron microscopy,transmission electron microscopy,X-ray diffraction,differential scanning calorimetry,microhardness,and bending tests.The results demonstrate a significant influence of V addition on the microstructure of the alloy.V addition leads to the formation of a(Ni,V)_(2)(Ti,Hf)-type Laves phase,which coexists with B19'martensite at room temperature.Aging at 550℃results in precipitation hardening due to the formation of nano-scale orthorhombic H-phase,with the peak hardness observed after 3 h of aging.The alloy at peak hardness state exhibits higher transformation strain and lower unrecovered strain compared to the solution-treated sample.The aged sample achieves a maximum transformation strain of 1.56%under 500 MPa. 展开更多
关键词 shape memory alloys NiTiHfV H-phase Laves phase martensitic transformation
下载PDF
Description of martensitic transformation kinetics in Fe-C-X(X = Ni,Cr,Mn,Si) system by a modified model
4
作者 Xiyuan Geng Hongcan Chen +3 位作者 Jingjing Wang Yu Zhang Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1026-1036,共11页
Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformat... Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformation during the cooling process must be addressed.At present,frequently used semi-empirical kinetics models suffer from huge errors at the beginning of transformation,and most of them fail to exhibit the sigmoidal shape characteristic of transformation curves.To describe the martensitic transformation process accurately,based on the Magee model,we introduced the changes in the nucleation activation energy of martensite with temperature,which led to the varying nucleation rates of this model during martensitic transformation.According to the calculation results,the relative error of the modified model for the martensitic transformation kinetics curves of Fe-C-X(X = Ni,Cr,Mn,Si) alloys reached 9.5% compared with those measured via the thermal expansion method.The relative error was approximately reduced by two-thirds compared with that of the Magee model.The incorporation of nucleation activation energy into the kinetics model contributes to the improvement of its precision. 展开更多
关键词 Fe-C-X system martensitic transformation kinetics curve semi-empirical model nucleation activation energy
下载PDF
Unveiling the cellular microstructure-property relations in martensitic stainless steel via laser powder bed fusion
5
作者 Lingzhi Wu Cong Zhang +7 位作者 Dil Faraz Khan Ruijie Zhang Yongwei Wang Xue Jiang Haiqing Yin Xuanhui Qu Geng Liu Jie Su 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2476-2487,共12页
Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect... Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel.This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF.The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction,but it reduces the average size of the cellular microstructure from 0.60 to 0.35μm.The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample,resulting in inadequate fusion and keyhole defects respectively.The optimal scanning speed for fabricating samples was determined to be 800 mm/s,which obtained the highest room temperature tensile strength and elongation,with the ultimate tensile strength measured at(1088.3±2.0)MPa and the elongation of(16.76±0.10)%.Furthermore,the mechanism of the evolution of surface morphology,defects,and energy input were clarified,and the relationship between cellular microstructure size and mechanical properties was also established. 展开更多
关键词 laser powder bed fusion martensitic stainless steel cellular microstructure mechanical properties strengthening mechanism
下载PDF
Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92
6
作者 Lei Peng Shang-Ming Chen +6 位作者 Jing-Yi Shi Yong-Jie Sun Yi-Fei Liu Yin-Zhong Shen Hong-Ya He Hui-Juan Wang Jie Tian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期186-199,共14页
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s... Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance. 展开更多
关键词 Grain boundary engineering Ferritic/martensitic steel Prior austenite grain boundary character distribution Grain boundary connectivity Intergranular damage resistance
下载PDF
Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel 被引量:8
7
作者 En-dian Fan Shi-qi Zhang +3 位作者 Dong-han Xie Qi-yue Zhao Xiao-gang Li Yun-hua Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第2期249-256,共8页
We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging ... We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging and fracture analysis.The results reveal that the HIC resistance of Nb-bearing steel is obviously superior to that of Nb-free steel,with the fractured Nb-bearing steel in the SSRT exhibiting a smaller ratio of elongation reduction(Iδ).However,as the hydrogen traps induced by NbC precipitates approach hydrogen saturation,the effect of the precipitates on the HIC resistance attenuate.We speculate that the highly dispersed nanosized NbC precipitates act as irreversible hydrogen traps that hinder the accumulation of hydrogen at potential crack nucleation sites.In addition,much like Nb-free steel,the Nb-bearing steel exhibits both H-solution strengthening and the resistance to HIC. 展开更多
关键词 nanosized NbC precipitates high-strength low-alloy steel hydrogen-induced cracking slow-strain-rate tensile hydrogen charging
下载PDF
Hydrogen-induced cracking behaviors of Incoloy alloy 825 被引量:2
8
作者 Yong-jin Yang Ke-wei Gao Chang-feng Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第1期58-62,共5页
The effect of hydrogen on the fractttre behaviors of Incoloy alloy 825 was investigated by means of slow strain rate testing (SSRT) Hydrogen was introduced into the sample by electrochemical charging. The results sh... The effect of hydrogen on the fractttre behaviors of Incoloy alloy 825 was investigated by means of slow strain rate testing (SSRT) Hydrogen was introduced into the sample by electrochemical charging. The results show that surface microcracks form gradually during ag- ing at room temperature when desorption of hydrogen takes place after hydrogen charging at a current density of 5 mA/cm^2 for 24 h. SSRT shows that the increase of ductility loss is significantly obvious as the hydrogen charging current density increases. Scanning electron microscopy (SEM) images reveal ductile fracture in the pre-charged sample with low current densities, while the fracture includes small quasi-cleavage regions and tends to be brittle fracture as the hydrogen charging current density increases to 5 mA/cm^2. 展开更多
关键词 Incoloy alloy hydrogen-induced cracking diffusible hydrogen slow strain rate testing
下载PDF
Investigation on hydrogen-induced cracking susceptibility of HG980D steel with yield strength 900 MPa 被引量:1
9
作者 高有进 王乘 徐宗林 《China Welding》 EI CAS 2008年第3期15-19,共5页
In this paper, the microstructure and hardness of HG980D heat-affected zone (HAZ) at different cooling rate t8/3 were studied, the implant critical fracture stress under three diffusible hydrogen conditions were mea... In this paper, the microstructure and hardness of HG980D heat-affected zone (HAZ) at different cooling rate t8/3 were studied, the implant critical fracture stress under three diffusible hydrogen conditions were measured, and the hydrogeninduced cracking (H1C) fructograph of steel HG980D were analyzed, The experimental results show that martensite exists in HAZ of HG980D till ts/3 ≥ 150 s, the harden quenching tendency of HG980D is greater; The implant critical fracture stress is related to difJhsible hydrogen content significantly, at low hydrogen level, high restraint stress is needed to nucleate HIC, the fraetograph is mainly mierovoid coalescence, bat at high hydrogen level, only small restraint stress can cause H1C occurrence, the fractograph is mainly quasicleavage. It is very important to choose ultra-low hydrogen welding consumable to weld steel HG980D to prevent hydrogen-induced cracking. 展开更多
关键词 HG980D hydrogen-induced cracking diffusible hydrogen FRACTOGRAPH
下载PDF
NUCLEATION AND GROWTH OF FERROUS MARTENSITES ALONG BOUNDARIES
10
作者 GONG Hai ZHANG Weiyi Dalian Railway Institute,Dalian,ChinaZHANG Xiumu Institute of Metal Research,Academia Sinica,Shenyang,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1991年第6期426-430,共5页
Martensites distributed along the austenite grain boundaries and twin boundaries have been examined in Fe-C,Fe-Ni-C and Fe-Cr-Mn-Mo-C alloys.The martensites may nucleate preferentially and grow easily along these boun... Martensites distributed along the austenite grain boundaries and twin boundaries have been examined in Fe-C,Fe-Ni-C and Fe-Cr-Mn-Mo-C alloys.The martensites may nucleate preferentially and grow easily along these boundaries.In the mixed martensites,the preferentially formed one is plate or butterfly martensite 展开更多
关键词 martensite nucleation martensite growth martensite morphology grain boundary twin boundary plate martensite
下载PDF
NUCLEATION AND GPOWTH OF FERROUS MARTENSITES
11
作者 ZHANG Xiumu LI Yiyi Institute of Metal Research,Academia Sinica,Shenyang 110015,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1991年第6期407-413,共7页
In situ observations of the nucleation and growth of ferrous martensites,including ε-, lenticular,butterfly,thin-plate and composite-plate ones at low temperature stage on optical or transmission electron microscope ... In situ observations of the nucleation and growth of ferrous martensites,including ε-, lenticular,butterfly,thin-plate and composite-plate ones at low temperature stage on optical or transmission electron microscope were carried out.The results confirmed the faulting model for the formation of ε-martensite proposed by Olso and Cohen.The grain boundaries and tri- ple points are the favourable nucleation sites for the thin plates,and their surface relief grown initially like a small needle.The lenticular martensite was observed as two stages of formation.According to the dislocation resolving reaction. (a/6)[111]_b→(a/3)[]_b+(a/2)[111]_b,the emission dislocation(=(a/2)[111]_b)acting as the dislocation source for the transition of lattice invariant shear from twinning to slip was proposed. 展开更多
关键词 martensitE NUCLEATION growth OBSERVATION emission dislocation
下载PDF
Morphology and Effect of Pre-deformation on Martensites by Colored Metaliography August 24,1990
12
作者 郭蕴宜 张修睦 曹宏禄 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1991年第1期47-49,共3页
The colored metallography was used to inves- tigate the morphology of martensite in Fe-Ni-C al- loys.By compression deformation martensite trans- forms from lenticular to thin-plate.It is proved that the bended and br... The colored metallography was used to inves- tigate the morphology of martensite in Fe-Ni-C al- loys.By compression deformation martensite trans- forms from lenticular to thin-plate.It is proved that the bended and broken martensites are inher- ent from compressive predeformation of austenite. 展开更多
关键词 MORPHOLOGY martensitE colored metallography
下载PDF
Threshold Stress Intensity of Hydrogen-Induced Cracking and Stress Corrosion Cracking of High Strength Steel
13
作者 LI Hui-lu GAO Ke-wei +5 位作者 QIAO Li-jie WANG Yan-bing CHU Wu-yang HUI Wei-jun DONG Han WENG Yu-qing 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2001年第2期42-46,共5页
The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cr... The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cracking during dynamical charging for 40 CrMo steel decreased linearly with the logarithm of the concentration of diffusible hydrogen.This equation was also applicable to SCC of high strength steel in aqueous solution.The critical hydrogen enrichment concentration necessary for SCC of high strength steel in water decreased exponentially with the increase of yield strength.Based on the results,the relationship between K_(ISCC) and σ_(ys) could be deduced. 展开更多
关键词 high strength steel stress corrosion hydrogen-induced cracking
下载PDF
First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation,mechanical and magnetic properties 被引量:2
14
作者 Huaxin Qi Jing Bai +7 位作者 Miao Jin Jiaxin Xu Xin Liu Ziqi Guan Jianglong Gu Daoyong Cong Xiang Zhao Liang Zuo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期930-938,共9页
The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125... The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125,0.25,0.375,y=0.625)]alloys were systematically studied by the first-principles calculations.For the formation energy,the martensite is smaller than the austenite,the Ni–(Co)–Mn–Cu–Ti alloys studied in this work can undergo martensitic transformation.The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) (y<0.625) alloys.When y=0.625 in the Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) series,the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state.Cu doping can decrease the thermal hysteresis and anisotropy of the Ni–(Co)–Mn–Ti alloy.Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance,but reduce the toughness in the Ni–Mn–Cu–Ti alloy.And the ductility of the Co–Cu co-doping alloy is inferior to that of the Ni–Mn–Cu–Ti and Ni–Co–Mn–Ti alloys.The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties. 展开更多
关键词 Ni–Mn–Ti-based all-d-metal Heusler alloys first-principles calculations mechanical properties martensitic transformation magnetic properties
下载PDF
Hydrogen-induced amorphization of Zr-Cu-Ni-Al alloy
15
作者 Fu-yu Dong Song-song Lu +7 位作者 Yue Zhang Qing-chun Xiang Hong-jun Huang Xiao-guang Yuan Xiao-jiao Zuo Liang-shun Luo Yan-qing Su Bin-bin Wang 《China Foundry》 SCIE 2017年第2期145-150,共6页
Arc melting was utilized in this study to produce Zr_(55)Cu_(30)Ni_5Al_(10) alloys under mixed atmospheres with various ratios of high-purity hydrogen to argon. The influences of hydrogen addition on the solidificatio... Arc melting was utilized in this study to produce Zr_(55)Cu_(30)Ni_5Al_(10) alloys under mixed atmospheres with various ratios of high-purity hydrogen to argon. The influences of hydrogen addition on the solidification structure and glass-forming ability of Zr_(55)Cu_(30)Ni_5Al_(10) alloy were determined by examining microstructures in different parts of the cast ingots. The results showed that different degrees of crystallization structures were obtained in the ascast button ingots after arc melting in high-purity Ar, and the cross-sectional solidification morphology of arcmelted ingots was found to consist of crystals with varying from the bottom up. By contrast, there were completely amorphous structures in the middle and upper areas of the as-cast button ingots fabricated by adding 10% H_2 to the high-purity Ar atmosphere. A clear solidification interface was found between the crystal and glass in the ascast button ingots, which indicates that hydrogen addition can enhance the Zr_(55)Cu_(30)Ni_5Al_(10) alloy's glass-forming ability. The precise mechanism responsible for this was also investigated. 展开更多
关键词 Zr-Cu-Ni-Al alloy melt hydrogenation solidification structure hydrogen-induced amorphization
下载PDF
Hydrogen Embrittlement of Nitrogenating Layer on Martensitic Alloys
16
作者 Daniel Moreno Yohanan Nachmana +5 位作者 Shimon Bashan Barak Weizman Denis Panchenko Michael Mansano Elinor Itzhak Moshe Shapira 《Journal of Minerals and Materials Characterization and Engineering》 2023年第5期161-171,共11页
Nitriding of the surface in martensitic stainless steels is commonly carried out to improve their wear resistance. The process of plasma nitriding in stainless steel is influenced by two mechanisms: physical diffusion... Nitriding of the surface in martensitic stainless steels is commonly carried out to improve their wear resistance. The process of plasma nitriding in stainless steel is influenced by two mechanisms: physical diffusion through the surface and chemical gas-metal reaction. The inner nitriding interaction involves the simultaneous penetration and formation of a solid solution, as well as the interaction of nitrogen with specific alloying elements, resulting in the development of homogeneous and heterogeneous structures. Our study concludes that the observed intergranular hydrogen embrittlement and crack formation during the surface nitridation process of AMS 5719 martensite alloy steel can be attributed to the ammonium concentration of approximately 50% at a temperature of 530˚C. 展开更多
关键词 Hydrogen Embrittlement Nitriding Coat Cracks martensite Steel Surface Hardness
下载PDF
Simulation of the Behaviour Laws in the Thermal Affected Zones of the 13Cr-4Ni Martensitic Stainless Steel
17
作者 Marcel Julmard Ongoumaka Yandza Harmel Obami-Ondon Christian Tathy 《Modern Mechanical Engineering》 2023年第4期63-76,共14页
During the welding, many phenomena occur. The materials deform under the action of residual stresses. This tendency is due to the high gradients of temperature during the process. These deformations are really difficu... During the welding, many phenomena occur. The materials deform under the action of residual stresses. This tendency is due to the high gradients of temperature during the process. These deformations are really difficult for many professionals operating in the area. In the goal to predict these variations, one has established the behaviour laws which will be applied to evaluate residual stresses and strains. This research is focused on the study of the Thermal Affected Zone (TAZ) during the welding of the 13Cr-4Ni martensitic stainless steel. The TAZ does not know any change of state (solid/liquid). It only knows the metallurgical phase change (austenite/martensite). There are three types of behaviour laws in this study: thermal, mechanical and metallurgical behaviour laws. The thermal behaviour law serves to evaluate the temperature field which induces the mechanical strains. The mechanical behaviour law serves to evaluate spherical stress (pressure) and deviatoric stress which compose the residual stress. It also helps to measure the total strain. The metallurgical behaviour law serves for the evaluation of the metallurgical phase proportions. To validate the modelling developed in this study, one has made the simulations to compare the results obtained with the analytical and experimental data. 展开更多
关键词 Behaviour Laws martensitic Stainless Steel Residual Stresses Strain Numerical Simulation
下载PDF
Predicting the Volume Fraction of Martensite in Welded Mild Steel Joint Reinforced with Titanium Alloy Powder
18
作者 Alain Ngenzi Stephen A. Akinlabi Anthony K. Muchiri 《Modeling and Numerical Simulation of Material Science》 2023年第2期11-27,共17页
Welded mild steel is used in different applications in engineering. To strengthen the joint, the weld can be reinforced by adding titanium alloy powder to the joint. This results in the formation of incomplete martens... Welded mild steel is used in different applications in engineering. To strengthen the joint, the weld can be reinforced by adding titanium alloy powder to the joint. This results in the formation of incomplete martensite in a welded joint. The incomplete martensite affects mechanical properties. Therefore, this study aims to predict the volume fraction of martensite in reinforced butt welded joints to understand complex phenomena during microstructure formation. To do so, a combination of the finite element method to predict temperature history, and the Koistinen and Marburger equation, were used to predict the volume fraction of martensite. The martensite start temperature was calculated using chemical elements obtained from the dilution-based mixture rule. The curve shape of martensite evolution was observed to be relatively linear due to the small quantity of martensite volume fraction. The simulated result correlated with experimental work documented in the literature. The model can be used in other powder addition techniques where the martensite can be observed in the final microstructure. 展开更多
关键词 Finite Element Analysis martensite Volume Fraction DILUTION Koistinen and Marburger Equation
下载PDF
Effect of low-temperature tempering on the mechanical properties of cold-rolled martensitic steel
19
作者 ZHU Xiaodong XUE Peng LI Wei 《Baosteel Technical Research》 CAS 2023年第1期11-16,共6页
Cold-rolled martensitic steel is an important type of advanced high-strength steel for automobile production.With martensite as its primary microstructure constituent, martensitic steel possesses exceptional high stre... Cold-rolled martensitic steel is an important type of advanced high-strength steel for automobile production.With martensite as its primary microstructure constituent, martensitic steel possesses exceptional high strength despite its low alloy content.As the strength of cold-rolled martensitic steel increases, the martensite and carbon content also increases, leading to a decrease in bending properties and toughness.In this paper, the effect of various tempering parameters on the bending property and impact toughness of a quenched cold-rolled martensitic steel sheet was studied.It is found that after quenching, the ductility and impact toughness of the experimental steel are improved using low-temperature heat treatment.The optimal tempering conditions for ductility and toughness are analyzed. 展开更多
关键词 water quenching TEMPERING ultrahigh strength martensitic steel sheet
下载PDF
Effects of Orthogonal Heat Treatment on Microstructure and Mechanical Properties of GN9 Ferritic/Martensitic Steel
20
作者 Tingwei Ma Xianchao Hao Ping Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期289-300,共12页
Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium-cooled fast reactors have been investigated through orthogonal design and analysis.Scanning electron microscopy(SEM),transmission e... Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium-cooled fast reactors have been investigated through orthogonal design and analysis.Scanning electron microscopy(SEM),transmission electron microscopy(TEM),differential scanning calorimeter(DSC),tensile and impact tests were used to evaluate the heat treatment parameters on yield strength,elongation and ductile-to-brittle transition temperature(DBTT).The results indicate that the microstructures of GN9 steel after orthogonal heat treatments consist of tempered martensite,M23C6,MX carbides and MX carbonitrides.The average prior austenite grains increase and the lath width decreases with the austenitizing temperature increasing from 1000°C to 1080°C.Tempering temperature is the most important factor that influences the dislocation evolution,yield strength and elongation compared with austenitizing tempera-ture and cooling methods.Austenitizing temperature,tempering temperature and cooling methods show interactive effects on DBTT.Carbide morphology and distribution,which is influenced by austenitizing and tempering tempera-tures,is the critical microstructural factor that influences the Charpy impact energy and DBTT.Based on the orthogo-nal design and microstructural analysis,the optimal heat treatment of GN9 steel is austenitizing at 1000°C for 0.5 h followed by air cooling and tempering at 760°C for 1.5 h. 展开更多
关键词 Ferritic/martensitic steel Orthogonal design M23C6 carbide Ductile-to-brittle transition temperature
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部