As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is impor...As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is important to achieving‘carbon peak and carbon neutrality’goals as soon as possible.Deep-water areas subjected to the action of long-term stress and tectonic movement have developed complex and volatile terrains,and as such,the morphologies of hydrate-bearing sediments(HBSs)fluctuate correspondingly.The key to numerically simulating HBS morphologies is the establishment of the conceptual model,which represents the objective and real description of the actual geological body.However,current numerical simulation models have characterized HBSs into horizontal strata without considering the fluctuation characteristics.Simply representing the HBS as a horizontal element reduces simulation accuracy.Therefore,the commonly used horizontal HBS model and a model considering the HBS’s fluctuation characteristics with the data of the SH2 site in the Shenhu Sea area were first constructed in this paper.Then,their production behaviors were compared,and the huge impact of the fluctuation characteristics on HBS production was determined.On this basis,the key parameters affecting the depressurization production of the fluctuating HBSs were studied and optimized.The research results show that the fluctuation characteristics have an obvious influence on the hydrate production of HBSs by affecting their temperatures and pressure distributions,as well as the transmission of the pressure drop and methane gas discharge.Furthermore,the results show that the gas productivity of fluctuating HBSs was about 5%less than that of horizontal HBSs.By optimizing the depressurization amplitude,well length,and layout location of vertical wells,the productivity of fluctuating HBSs increased by about 56.6%.展开更多
A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the inte...A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.展开更多
Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effecti...Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio.展开更多
We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o...We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.展开更多
In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolut...In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells.展开更多
Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction ...Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.展开更多
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press...Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.展开更多
Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters t...Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters the formation,resulting in widespread water-rock interaction.Deeply understanding such effects is required to optimize the production system.In this study,the mechanisms of water-rock interaction and the associated responses of shale fabric are systematically reviewed for working fluids such as neutral fluids,acid fluids,alkali fluids and oxidative fluids.It is shown that shale is generally rich in water-sensitive components such as clay minerals,acidsensitive components(like carbonate minerals),alkali-sensitive components(like quartz),oxidative-sensitive components(like organic matter and pyrite),which easily lead to change of rock fabric and mechanical properties owing to water-rock interaction.According to the results,oxidizing acid fluids and oxidizing fracturing fluids should be used to enhance shale gas recovery.This study also indicates that an aspect playing an important role in increasing cumulative gas production is the optimization of the maximum shut-in time based on the change point of the wellhead pressure drop rate.Another important influential factor to be considered is the control of the wellhead pressure considering the stress sensitivity and creep characteristics of the fracture network.展开更多
It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because o...It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because of the high risk of well construction and low production efficiency,they are difficult to be recovered by using conventional oil production methods.As a result,this paper proposes an alternative design based on a combination of radial drilling,heat injection,and backfilling methods.Multi-branch holes are used to penetrate shallow gas hydrate reservoirs to expand the depressurization area,and heat injection is utilized as a supplement to improve gas production.Geotechnical information collected from an investigation site close to the offshore production well in the South China Sea is used to assess the essential components of this plan,including well construction stability and gas production behavior.It demonstrates that the hydraulic fracturing of the 60mbsf overburden layer can be prevented by regulating the drilling fluid densities.However,the traditional well structure is unstable,and the suction anchor is advised for better mechanical performance.The gas produc-tion rate can be significantly increased by combining hot water injection and depressurization methods.Additionally,the suitable produc-tion equipment already in use is discussed.展开更多
It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China...It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs.展开更多
Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence d...Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.展开更多
Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to...Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to forecast shale gas production is still challenging due to complex fracture networks,dynamic fracture properties,frac hits,complicated multiphase flow,and multi-scale flow as well as data quality and uncertainty.This work develops an integrated framework for evaluating shale gas well production based on data-driven models.Firstly,a comprehensive dominated-factor system has been established,including geological,drilling,fracturing,and production factors.Data processing and visualization are required to ensure data quality and determine final data set.A shale gas production evaluation model is developed to evaluate shale gas production levels.Finally,the random forest algorithm is used to forecast shale gas production.The prediction accuracy of shale gas production level is higher than 95%based on the shale gas reservoirs in China.Forty-one wells are randomly selected to predict cumulative gas production using the optimal regression model.The proposed shale gas production evaluation frame-work overcomes too many assumptions of analytical or semi-analytical models and avoids huge computation cost and poor generalization for numerical modelling.展开更多
Natural gas hydrate has huge reserves and is widely distributed in marine environment.Its commercial development is of great significance for alleviating the contradiction between energy supply and demand.As an effici...Natural gas hydrate has huge reserves and is widely distributed in marine environment.Its commercial development is of great significance for alleviating the contradiction between energy supply and demand.As an efficient research method,numerical simulation can provide valuable insights for the design and optimization of hydrate development.However,most of the current production models simplify the reservoir as a two-dimensional(2D)horizontal layered model,often ignoring the impact of formation dip angle.To improve the accuracy of production prediction and provide theoretical support for the optimization of production well design,two three-dimensional(3D)geological models with different dip angles based on the geological data from two typical sites are constructed.The vertical well,horizontal well and multilateral wells are deployed in these reservoirs with different permeabilities to perform production trial,and the sensitivity analysis of dip angles is also carried out.The short-term production behaviors in high and low permeability reservoirs with different dip angles are exhibited.The simulation results show that 1)the gas and water production behaviors for different well types in the two typical reservoirs show obviously different variation laws when the short-term depressurization is conducted in the inclined formation;2)the inclined formation will reduce the gas production and increase the water extraction,and the phenomena becomes pronounced as the dip angle increases,particularly in the low-permeability reservoirs;3)and the impact of formation dip on hydrate recovery does not change significantly with the variation of well type.展开更多
A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis ca...A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis can be challenging because production performance is dominated by the complex interaction among a series of geological and engineering factors.In fact,each factor can be viewed as a player who makes cooperative contributions to the production payoff within the constraints of physical laws and models.Inspired by the idea,we propose a hybrid data-driven analysis framework in this study,where the contributions of dominant factors are quantitatively evaluated,the productions are precisely forecasted,and the development optimization suggestions are comprehensively generated.More specifically,game theory and machine learning models are coupled to determine the dominating geological and engineering factors.The Shapley value with definite physical meaning is employed to quantitatively measure the effects of individual factors.A multi-model-fused stacked model is trained for production forecast,which provides the basis for derivative-free optimization algorithms to optimize the development plan.The complete workflow is validated with actual production data collected from the Fuling shale gas field,Sichuan Basin,China.The validation results show that the proposed procedure can draw rigorous conclusions with quantified evidence and thereby provide specific and reliable suggestions for development plan optimization.Comparing with traditional and experience-based approaches,the hybrid data-driven procedure is advanced in terms of both efficiency and accuracy.展开更多
Sand production is one of the main obstacles restricting gas extraction efficiency and safety from marine natural gas hydrate(NGH)reservoirs.Particle migration within the NGH reservoir dominates sand production behavi...Sand production is one of the main obstacles restricting gas extraction efficiency and safety from marine natural gas hydrate(NGH)reservoirs.Particle migration within the NGH reservoir dominates sand production behaviors,while their relationships were rarely reported,severely constrains quantitative evaluation of sand production risks.This paper reports the optical observations of solid particle migration and production from micrometer to mesoscopic scales conditioned to gravel packing during depressurization-induced NGH dissociation for the first time.Theoretical evolutionary modes of sand migration are established based on experimental observations,and its implications on field NGH are comprehensively discussed.Five particle migration regimes of local borehole failure,continuous collapse,wormhole expansion,extensive slow deformation,and pore-wall fluidization are proved to occur during depressurization.The types of particle migration regimes and their transmission modes during depressurization are predominantly determined by initial hydrate saturation.In contrast,the depressurization mainly dominates the transmission rate of the particle migration regimes.Furthermore,both the cumulative mass and the medium grain size of the produced sand decrease linearly with increasing initial methane hydrate(MH)saturation.Discontinuous gas bubble emission,expansion,and explosion during MH dissociation delay sand migration into the wellbore.At the same time,continuous water flow is a requirement for sand production during hydrate dissociation by depressurization.The experiments enlighten us that a constitutive model that can illustrate visible particle migration regimes and their transmission modes is urgently needed to bridge numerical simulation and field applications.Optimizing wellbore layout positions or special reservoir treatment shall be important for mitigating sand production tendency during NGH exploitation.展开更多
Monocyclic nitrogen-rich 3-(aminomethyl)-4,5-diamine-1,2,4-triazole(1)and fused cyclic 3,7-diamine-6-(aminomethyl)-[1,2,4]triazolo[4,3-b][1,2,4]triazole(9)were synthesized through the convenient cyclization reaction f...Monocyclic nitrogen-rich 3-(aminomethyl)-4,5-diamine-1,2,4-triazole(1)and fused cyclic 3,7-diamine-6-(aminomethyl)-[1,2,4]triazolo[4,3-b][1,2,4]triazole(9)were synthesized through the convenient cyclization reaction from the readily available reactant.Their energetic salts with high nitrogen content were proved to be rare examples of divalent monocyclic/fused cyclic cationic salts according to the single crystal analyses.The structure of intermediate B was also identified and verified by its trivalent cation crystal 17.5H_2O indirectly.Energetic compounds 2-8 and 10-17 were fully characterized by NMR spectroscopy,infrared spectroscopy,differential scanning calorimetry,elemental analysis.These energetic salts exhibit good thermal stability with decomposition temperatures ranged from 182℃to 245℃.The sensitivity of compounds 2,6,10 and 14 is similar or superior to that of RDX while the others were much more insensitive to mechanical stimulate.Furthermore,detonation velocity of 10(8843 m/s)surpass that of RDX(D=8795 m/s).Considering the high gas production volume(≥808 L/kg)of 2,4,10and 12,constant-volume combustion experiments were conduct to evaluate their gas production capacities specifically.These compounds possess much higher maximum gas-production pressures(P_(max):7.88-10.08 MPa)than the commonly used reagent guanidine nitrate(GN:P_(max)=4.20 MPa),which indicate their strong gas production capacity.展开更多
High concentrated and heterogeneous distribution of gas hydrates have been identified in the gas hydrate production test region in the Shenhu area,South China Sea.The gas hydrate-bearing sediments with high saturation...High concentrated and heterogeneous distribution of gas hydrates have been identified in the gas hydrate production test region in the Shenhu area,South China Sea.The gas hydrate-bearing sediments with high saturation locate at two ridges of submarine canyon with different thickness and saturations just above the bottom simulating reflection.The crossplots of gamma ray,acoustic impedance(P-impedance)and porosity at four sites show that the sediments can be divided into the upper and lower layers at different depths,indicating different geotechnical reservoir properties.Therefore,the depositional environments and physical properties at two ridges are analyzed and compared to show the different characteristics of hydrate reservoir.High porosity,high P-wave velocity,and coarse grain size indicate better reservoir quality and higher energy depositional environment for gas hydrate at Sites W18 and W19 than those at Sites W11 and W17.Our interpretation is that the base of canyon deposits at Sites W18 and W19 characterized by upward-coarsening units may be turbidity sand layers,thus significantly improving the reservoir quality with increasing gas hydrate saturation.The shelf and slope sliding deposits compose of the fine-grained sediments at Sites W11 and W17.The gas hydrate production test sites were conducted at the ridge of W11 and W17,mainly because of the thicker and larger area of gas hydrate-bearing reservoirs than those at Sites W18 and W19.All the results provide useful insights for assessing reservoir quality in the Shenhu area.展开更多
Internal solitary waves(ISWs) contain great energy and have the characteristics of emergency and concealment. To avoid their damage to offshore engineering, a new generation of monitoring and early warning system for ...Internal solitary waves(ISWs) contain great energy and have the characteristics of emergency and concealment. To avoid their damage to offshore engineering, a new generation of monitoring and early warning system for ISWs was developed using technologies of double buoys monitoring, intelligent realtime data transmission, and automatic software identification. The system was applied to the second natural gas hydrates(NGHs) production test in the Shenhu Area, South China Sea(SCS) and successfully provided the early warning of ISWs for 173 days(from October 2019 to April 2020). The abrupt changes in the thrust force of the drilling platform under the attack of ISWs were consistent with the early warning information, proving the reliability of this system. A total of 93 ISWs were detected around the drilling platform. Most of them occurred during the spring tides in October–December 2019 and April 2020, while few of them occurred in winter. As suggested by the theoretical model, the full-depth structure of ISWs was a typical current profile of mode-1, and the velocities of wave-induced currents can reach 80 cm/s and30 cm/s, respectively, in the upper ocean and near the seabed. The ISWs may be primarily generated from the interactions between the topography and semidiurnal tides in the Luzon Strait, and then propagate westward to the drilling platform. This study could serve as an important reference for the early warning of ISWs for offshore engineering construction in the future.展开更多
The energy industry faces a significant challenge in extracting natural gas from offshore natural gas hydrate(NGH)reservoirs,primarily due to the low productivity of wells and the high operational costs involved.The p...The energy industry faces a significant challenge in extracting natural gas from offshore natural gas hydrate(NGH)reservoirs,primarily due to the low productivity of wells and the high operational costs involved.The present study offers an assessment of the feasibility of utilizing geothermal energy to augment the production of natural gas from offshore gas hydrate reservoirs through the implementation of the methane-CO_(2)swapping technique.The present study expands the research scope of the authors beyond their previous publication,which exclusively examined the generation of methane from marine gas hydrates.Specifically,the current investigation explores the feasibility of utilizing the void spaces created by the extracted methane in the hydrate reservoir for carbon dioxide storage.Analytical models were employed to forecast the heat transfer from a geothermal zone to an NGH reservoir.A study was conducted utilizing data obtained from a reservoir situated in the Shenhu region of the Northern South China Sea.The findings of the model indicate that the implementation of geothermal heating can lead to a substantial enhancement in the productivity of wells located in heated reservoirs during CO_(2)swapping procedures.The non-linear relationship between the temperature of the heated reservoir and the rate of fold increase has been observed.It is anticipated that the fold of increase will surpass 5 when the gas hydrate reservoir undergoes a temperature rise from 6℃ to 16℃.The mathematical models utilized in this study did not incorporate the impact of heat convection resulting from CO_(2)flow into the gas reservoir.This factor has the potential to enhance well productivity.The mathematical models’deviation assumptions may cause over-prediction of well productivity in geothermal-stimulated reservoirs.Additional research is required to examine the impacts of temperature drawdown,heat convection resulting from depressurization,heat-induced gas pressure increment,and the presence of free gas in the formation containing hydrates.The process of CH4-CO_(2)swapping,which has been investigated,involves the utilization of geothermal stimulation.This method is highly encouraging as it enables the efficient injection of CO_(2)into gas hydrate reservoirs,resulting in the permanent sequestration of CO_(2)in a solid state.Additional research is warranted to examine the rate of mass transfer of CO_(2)within reservoirs of gas hydrates.展开更多
Natural pastures constitute a major component of ruminant livestock feed, and are the most cost-effective feed resource available for smallholder subsistence farmers. However, this feed resource does not meet animal n...Natural pastures constitute a major component of ruminant livestock feed, and are the most cost-effective feed resource available for smallholder subsistence farmers. However, this feed resource does not meet animal nutritional requirement due to deficiency in nitrogen, energy and minerals. In addition, at maturity lignification is the major concern since it reduces digestibility and contributes to methane emission. Thus, the objective of this study was to evaluate the effect of supplementing low-quality Eragrostis grass hay with five (9281, 11,252, 11,255, 11,595 and 11,604) selected Stylosanthes scabra accessions on in vitro ruminal fermentation and neutral detergent fiber degradation. Therefore, in vitro study was conducted on grass hay, accessions and the mixture of grass hay with each accession included at two (15%, 30%) levels. The substrates (grass hay, accessions and the mixtures) were incubated in separate serum bottles for 72 h. Neutral detergent fiber (NDF) of the accessions ranged from 300 to 350 g/kg DM with crude protein (CP) value ranging from 177.5 to 184.1 g/kg DM. Eragrostis grass hay had NDF value of 813 g/kg DM, with CP value of 34.3 g/kg DM. Grass hay fermented slowly, it took 30 h for grass hay to produce gas volume above 50 mL, while Stylosanthes scabra accessions took 12 h. Supplementing grass hay with accessions significantly improved fermentation. However, it was observed that 15% inclusion took 30 h to produce gas volume above 50 mL, whereas at 30% inclusions it took 24 h for accession 9281, 11,595 and 11,604. Accession 11,604 improve grass fermentation by almost three times the value of grass hay in 2 h. Grass hay supplemented with accession 11,604 at 30% had a positive associative effect and significantly improved NDF degradability. In conclusion, accession 11,604 may be fed strategically as forage supplement to low-quality forage for ruminants.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42276224 and 42206230)the Jilin Scientific and Technological Development Program(No.20190303083SF)+1 种基金the International Cooperation Key Laboratory of Underground Energy Development and Geological Restoration(No.YDZJ202102CXJD014)the Graduate Innovation Fund of Jilin University(No.2023CX100).
文摘As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is important to achieving‘carbon peak and carbon neutrality’goals as soon as possible.Deep-water areas subjected to the action of long-term stress and tectonic movement have developed complex and volatile terrains,and as such,the morphologies of hydrate-bearing sediments(HBSs)fluctuate correspondingly.The key to numerically simulating HBS morphologies is the establishment of the conceptual model,which represents the objective and real description of the actual geological body.However,current numerical simulation models have characterized HBSs into horizontal strata without considering the fluctuation characteristics.Simply representing the HBS as a horizontal element reduces simulation accuracy.Therefore,the commonly used horizontal HBS model and a model considering the HBS’s fluctuation characteristics with the data of the SH2 site in the Shenhu Sea area were first constructed in this paper.Then,their production behaviors were compared,and the huge impact of the fluctuation characteristics on HBS production was determined.On this basis,the key parameters affecting the depressurization production of the fluctuating HBSs were studied and optimized.The research results show that the fluctuation characteristics have an obvious influence on the hydrate production of HBSs by affecting their temperatures and pressure distributions,as well as the transmission of the pressure drop and methane gas discharge.Furthermore,the results show that the gas productivity of fluctuating HBSs was about 5%less than that of horizontal HBSs.By optimizing the depressurization amplitude,well length,and layout location of vertical wells,the productivity of fluctuating HBSs increased by about 56.6%.
文摘A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.
基金supported by the National Natural Science Foundation of China (Nos.52074334,51991365)the National Key R&D Program of China (2021YFC2800903),which are gratefully acknowledged.
文摘Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio.
基金supported by the State of Texas Advanced Resource Recovery(STARR)programthe Bureau of Economic Geology's Tight Oil Resource Assessment(TORA)Mudrock Systems Research Laboratory(MSRL)consortia。
文摘We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.
基金financial support from PetroChina Innovation Foundation。
文摘In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells.
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of Sinopec.
文摘Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.
基金Supported by National Natural Science Foundation of China(52104049)Young Elite Scientist Sponsorship Program by BAST(BYESS2023262)Science Foundation of China University of Petroleum,Beijing(2462022BJRC004).
文摘Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.
基金Lijun,You,Innovative Research Project for Sichuan Youth Scientific and Technological Innovation(Grants No.2016TD0016)Qiuyang Cheng,Postdoctoral Research Project of Petrochina Southwest Oil and Gas Field Company(Grants No.20230304-13).
文摘Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters the formation,resulting in widespread water-rock interaction.Deeply understanding such effects is required to optimize the production system.In this study,the mechanisms of water-rock interaction and the associated responses of shale fabric are systematically reviewed for working fluids such as neutral fluids,acid fluids,alkali fluids and oxidative fluids.It is shown that shale is generally rich in water-sensitive components such as clay minerals,acidsensitive components(like carbonate minerals),alkali-sensitive components(like quartz),oxidative-sensitive components(like organic matter and pyrite),which easily lead to change of rock fabric and mechanical properties owing to water-rock interaction.According to the results,oxidizing acid fluids and oxidizing fracturing fluids should be used to enhance shale gas recovery.This study also indicates that an aspect playing an important role in increasing cumulative gas production is the optimization of the maximum shut-in time based on the change point of the wellhead pressure drop rate.Another important influential factor to be considered is the control of the wellhead pressure considering the stress sensitivity and creep characteristics of the fracture network.
基金financially supported by the Natural Science Foundation of Shandong Province(No.ZR202011030013)the National Natural Science Foundation of China(No.41976205)+1 种基金the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2021QNLM020002)the China Geological Survey Program(No.DD20221704).
文摘It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because of the high risk of well construction and low production efficiency,they are difficult to be recovered by using conventional oil production methods.As a result,this paper proposes an alternative design based on a combination of radial drilling,heat injection,and backfilling methods.Multi-branch holes are used to penetrate shallow gas hydrate reservoirs to expand the depressurization area,and heat injection is utilized as a supplement to improve gas production.Geotechnical information collected from an investigation site close to the offshore production well in the South China Sea is used to assess the essential components of this plan,including well construction stability and gas production behavior.It demonstrates that the hydraulic fracturing of the 60mbsf overburden layer can be prevented by regulating the drilling fluid densities.However,the traditional well structure is unstable,and the suction anchor is advised for better mechanical performance.The gas produc-tion rate can be significantly increased by combining hot water injection and depressurization methods.Additionally,the suitable produc-tion equipment already in use is discussed.
基金China Postdoctoral Science Foundation,Grant/Award Number:2020M681768Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20200653+1 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:2021GJZPY15National Natural Science Foundation of China,Grant/Award Number:42106210。
文摘It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890914)。
文摘Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.
基金funded by National Natural Science Foundation of China(52004238)China Postdoctoral Science Foundation(2019M663561).
文摘Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to forecast shale gas production is still challenging due to complex fracture networks,dynamic fracture properties,frac hits,complicated multiphase flow,and multi-scale flow as well as data quality and uncertainty.This work develops an integrated framework for evaluating shale gas well production based on data-driven models.Firstly,a comprehensive dominated-factor system has been established,including geological,drilling,fracturing,and production factors.Data processing and visualization are required to ensure data quality and determine final data set.A shale gas production evaluation model is developed to evaluate shale gas production levels.Finally,the random forest algorithm is used to forecast shale gas production.The prediction accuracy of shale gas production level is higher than 95%based on the shale gas reservoirs in China.Forty-one wells are randomly selected to predict cumulative gas production using the optimal regression model.The proposed shale gas production evaluation frame-work overcomes too many assumptions of analytical or semi-analytical models and avoids huge computation cost and poor generalization for numerical modelling.
基金supported by the National Natural Science Foundation of China(Nos.42372361 and 51904280)the Key Research and Development Program of China(No.2018YFE0126400).
文摘Natural gas hydrate has huge reserves and is widely distributed in marine environment.Its commercial development is of great significance for alleviating the contradiction between energy supply and demand.As an efficient research method,numerical simulation can provide valuable insights for the design and optimization of hydrate development.However,most of the current production models simplify the reservoir as a two-dimensional(2D)horizontal layered model,often ignoring the impact of formation dip angle.To improve the accuracy of production prediction and provide theoretical support for the optimization of production well design,two three-dimensional(3D)geological models with different dip angles based on the geological data from two typical sites are constructed.The vertical well,horizontal well and multilateral wells are deployed in these reservoirs with different permeabilities to perform production trial,and the sensitivity analysis of dip angles is also carried out.The short-term production behaviors in high and low permeability reservoirs with different dip angles are exhibited.The simulation results show that 1)the gas and water production behaviors for different well types in the two typical reservoirs show obviously different variation laws when the short-term depressurization is conducted in the inclined formation;2)the inclined formation will reduce the gas production and increase the water extraction,and the phenomena becomes pronounced as the dip angle increases,particularly in the low-permeability reservoirs;3)and the impact of formation dip on hydrate recovery does not change significantly with the variation of well type.
基金This work was supported by the National Natural Science Foundation of China(Grant No.42050104)the Science Foundation of SINOPEC Group(Grant No.P20030).
文摘A comprehensive and precise analysis of shale gas production performance is crucial for evaluating resource potential,designing a field development plan,and making investment decisions.However,quantitative analysis can be challenging because production performance is dominated by the complex interaction among a series of geological and engineering factors.In fact,each factor can be viewed as a player who makes cooperative contributions to the production payoff within the constraints of physical laws and models.Inspired by the idea,we propose a hybrid data-driven analysis framework in this study,where the contributions of dominant factors are quantitatively evaluated,the productions are precisely forecasted,and the development optimization suggestions are comprehensively generated.More specifically,game theory and machine learning models are coupled to determine the dominating geological and engineering factors.The Shapley value with definite physical meaning is employed to quantitatively measure the effects of individual factors.A multi-model-fused stacked model is trained for production forecast,which provides the basis for derivative-free optimization algorithms to optimize the development plan.The complete workflow is validated with actual production data collected from the Fuling shale gas field,Sichuan Basin,China.The validation results show that the proposed procedure can draw rigorous conclusions with quantified evidence and thereby provide specific and reliable suggestions for development plan optimization.Comparing with traditional and experience-based approaches,the hybrid data-driven procedure is advanced in terms of both efficiency and accuracy.
基金supported by the Laoshan Laboratory(No.LSKJ LSKJ202203506)the Taishan Scholars Program,and the National Natural Science Foundation of China(Grant No.41976074).
文摘Sand production is one of the main obstacles restricting gas extraction efficiency and safety from marine natural gas hydrate(NGH)reservoirs.Particle migration within the NGH reservoir dominates sand production behaviors,while their relationships were rarely reported,severely constrains quantitative evaluation of sand production risks.This paper reports the optical observations of solid particle migration and production from micrometer to mesoscopic scales conditioned to gravel packing during depressurization-induced NGH dissociation for the first time.Theoretical evolutionary modes of sand migration are established based on experimental observations,and its implications on field NGH are comprehensively discussed.Five particle migration regimes of local borehole failure,continuous collapse,wormhole expansion,extensive slow deformation,and pore-wall fluidization are proved to occur during depressurization.The types of particle migration regimes and their transmission modes during depressurization are predominantly determined by initial hydrate saturation.In contrast,the depressurization mainly dominates the transmission rate of the particle migration regimes.Furthermore,both the cumulative mass and the medium grain size of the produced sand decrease linearly with increasing initial methane hydrate(MH)saturation.Discontinuous gas bubble emission,expansion,and explosion during MH dissociation delay sand migration into the wellbore.At the same time,continuous water flow is a requirement for sand production during hydrate dissociation by depressurization.The experiments enlighten us that a constitutive model that can illustrate visible particle migration regimes and their transmission modes is urgently needed to bridge numerical simulation and field applications.Optimizing wellbore layout positions or special reservoir treatment shall be important for mitigating sand production tendency during NGH exploitation.
基金supported by the National Natural Science Foundation of China(No.21875110,22075143)the Science Challenge Project(No.TZ2018004)the Qing Lan Project for the grant。
文摘Monocyclic nitrogen-rich 3-(aminomethyl)-4,5-diamine-1,2,4-triazole(1)and fused cyclic 3,7-diamine-6-(aminomethyl)-[1,2,4]triazolo[4,3-b][1,2,4]triazole(9)were synthesized through the convenient cyclization reaction from the readily available reactant.Their energetic salts with high nitrogen content were proved to be rare examples of divalent monocyclic/fused cyclic cationic salts according to the single crystal analyses.The structure of intermediate B was also identified and verified by its trivalent cation crystal 17.5H_2O indirectly.Energetic compounds 2-8 and 10-17 were fully characterized by NMR spectroscopy,infrared spectroscopy,differential scanning calorimetry,elemental analysis.These energetic salts exhibit good thermal stability with decomposition temperatures ranged from 182℃to 245℃.The sensitivity of compounds 2,6,10 and 14 is similar or superior to that of RDX while the others were much more insensitive to mechanical stimulate.Furthermore,detonation velocity of 10(8843 m/s)surpass that of RDX(D=8795 m/s).Considering the high gas production volume(≥808 L/kg)of 2,4,10and 12,constant-volume combustion experiments were conduct to evaluate their gas production capacities specifically.These compounds possess much higher maximum gas-production pressures(P_(max):7.88-10.08 MPa)than the commonly used reagent guanidine nitrate(GN:P_(max)=4.20 MPa),which indicate their strong gas production capacity.
基金Supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0104)the National Natural Science Foundation of China(Nos.U19B2005,42076072)+1 种基金the Pilot National Laboratory for Marine Science and Technology(Qingdao)Initial Foundation(No.JCZX202019)the Research Start-up Funds of Zhufeng Scholars Program。
文摘High concentrated and heterogeneous distribution of gas hydrates have been identified in the gas hydrate production test region in the Shenhu area,South China Sea.The gas hydrate-bearing sediments with high saturation locate at two ridges of submarine canyon with different thickness and saturations just above the bottom simulating reflection.The crossplots of gamma ray,acoustic impedance(P-impedance)and porosity at four sites show that the sediments can be divided into the upper and lower layers at different depths,indicating different geotechnical reservoir properties.Therefore,the depositional environments and physical properties at two ridges are analyzed and compared to show the different characteristics of hydrate reservoir.High porosity,high P-wave velocity,and coarse grain size indicate better reservoir quality and higher energy depositional environment for gas hydrate at Sites W18 and W19 than those at Sites W11 and W17.Our interpretation is that the base of canyon deposits at Sites W18 and W19 characterized by upward-coarsening units may be turbidity sand layers,thus significantly improving the reservoir quality with increasing gas hydrate saturation.The shelf and slope sliding deposits compose of the fine-grained sediments at Sites W11 and W17.The gas hydrate production test sites were conducted at the ridge of W11 and W17,mainly because of the thicker and larger area of gas hydrate-bearing reservoirs than those at Sites W18 and W19.All the results provide useful insights for assessing reservoir quality in the Shenhu area.
基金funded by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0307)the Marine Geological Survey Program of China Geological Survey (DD20190218, DD20221706)+1 种基金the Key Program of Marine Economy Development Special Foundation of Department of Natural Resources of Guangdong Province (GDNRC [2020] 043)the National Natural Science Foundation of China (41806074, 41730528)。
文摘Internal solitary waves(ISWs) contain great energy and have the characteristics of emergency and concealment. To avoid their damage to offshore engineering, a new generation of monitoring and early warning system for ISWs was developed using technologies of double buoys monitoring, intelligent realtime data transmission, and automatic software identification. The system was applied to the second natural gas hydrates(NGHs) production test in the Shenhu Area, South China Sea(SCS) and successfully provided the early warning of ISWs for 173 days(from October 2019 to April 2020). The abrupt changes in the thrust force of the drilling platform under the attack of ISWs were consistent with the early warning information, proving the reliability of this system. A total of 93 ISWs were detected around the drilling platform. Most of them occurred during the spring tides in October–December 2019 and April 2020, while few of them occurred in winter. As suggested by the theoretical model, the full-depth structure of ISWs was a typical current profile of mode-1, and the velocities of wave-induced currents can reach 80 cm/s and30 cm/s, respectively, in the upper ocean and near the seabed. The ISWs may be primarily generated from the interactions between the topography and semidiurnal tides in the Luzon Strait, and then propagate westward to the drilling platform. This study could serve as an important reference for the early warning of ISWs for offshore engineering construction in the future.
基金funding the project“Safe,Sustainable,and Resilient Development of Offshore Reservoirs and Natural Gas Upgrading through Innovative Science and Technology:Gulf of Mexico–Mediterranean,”through Contract No.EC-19 Fossil Energy。
文摘The energy industry faces a significant challenge in extracting natural gas from offshore natural gas hydrate(NGH)reservoirs,primarily due to the low productivity of wells and the high operational costs involved.The present study offers an assessment of the feasibility of utilizing geothermal energy to augment the production of natural gas from offshore gas hydrate reservoirs through the implementation of the methane-CO_(2)swapping technique.The present study expands the research scope of the authors beyond their previous publication,which exclusively examined the generation of methane from marine gas hydrates.Specifically,the current investigation explores the feasibility of utilizing the void spaces created by the extracted methane in the hydrate reservoir for carbon dioxide storage.Analytical models were employed to forecast the heat transfer from a geothermal zone to an NGH reservoir.A study was conducted utilizing data obtained from a reservoir situated in the Shenhu region of the Northern South China Sea.The findings of the model indicate that the implementation of geothermal heating can lead to a substantial enhancement in the productivity of wells located in heated reservoirs during CO_(2)swapping procedures.The non-linear relationship between the temperature of the heated reservoir and the rate of fold increase has been observed.It is anticipated that the fold of increase will surpass 5 when the gas hydrate reservoir undergoes a temperature rise from 6℃ to 16℃.The mathematical models utilized in this study did not incorporate the impact of heat convection resulting from CO_(2)flow into the gas reservoir.This factor has the potential to enhance well productivity.The mathematical models’deviation assumptions may cause over-prediction of well productivity in geothermal-stimulated reservoirs.Additional research is required to examine the impacts of temperature drawdown,heat convection resulting from depressurization,heat-induced gas pressure increment,and the presence of free gas in the formation containing hydrates.The process of CH4-CO_(2)swapping,which has been investigated,involves the utilization of geothermal stimulation.This method is highly encouraging as it enables the efficient injection of CO_(2)into gas hydrate reservoirs,resulting in the permanent sequestration of CO_(2)in a solid state.Additional research is warranted to examine the rate of mass transfer of CO_(2)within reservoirs of gas hydrates.
文摘Natural pastures constitute a major component of ruminant livestock feed, and are the most cost-effective feed resource available for smallholder subsistence farmers. However, this feed resource does not meet animal nutritional requirement due to deficiency in nitrogen, energy and minerals. In addition, at maturity lignification is the major concern since it reduces digestibility and contributes to methane emission. Thus, the objective of this study was to evaluate the effect of supplementing low-quality Eragrostis grass hay with five (9281, 11,252, 11,255, 11,595 and 11,604) selected Stylosanthes scabra accessions on in vitro ruminal fermentation and neutral detergent fiber degradation. Therefore, in vitro study was conducted on grass hay, accessions and the mixture of grass hay with each accession included at two (15%, 30%) levels. The substrates (grass hay, accessions and the mixtures) were incubated in separate serum bottles for 72 h. Neutral detergent fiber (NDF) of the accessions ranged from 300 to 350 g/kg DM with crude protein (CP) value ranging from 177.5 to 184.1 g/kg DM. Eragrostis grass hay had NDF value of 813 g/kg DM, with CP value of 34.3 g/kg DM. Grass hay fermented slowly, it took 30 h for grass hay to produce gas volume above 50 mL, while Stylosanthes scabra accessions took 12 h. Supplementing grass hay with accessions significantly improved fermentation. However, it was observed that 15% inclusion took 30 h to produce gas volume above 50 mL, whereas at 30% inclusions it took 24 h for accession 9281, 11,595 and 11,604. Accession 11,604 improve grass fermentation by almost three times the value of grass hay in 2 h. Grass hay supplemented with accession 11,604 at 30% had a positive associative effect and significantly improved NDF degradability. In conclusion, accession 11,604 may be fed strategically as forage supplement to low-quality forage for ruminants.