期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities 被引量:21
1
作者 Wei Xing Jinlong Li +6 位作者 Peng Li Chong Wang Yanan Cao Desheng Li Yunfeng Yang Jizhong Zhou Jiane Zuo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第3期262-270,共9页
Hydrogenotrophic denitrification is promising for tertiary nitrogen removal from municipal wastewater. To reveal the influence of residual organics in municipal wastewater on hydrogenotrophic denitrifiers, we adopted ... Hydrogenotrophic denitrification is promising for tertiary nitrogen removal from municipal wastewater. To reveal the influence of residual organics in municipal wastewater on hydrogenotrophic denitrifiers, we adopted high-throughput 16 S r RNA gene amplicon sequencing to examine microbial communities in hydrogenotrophic denitrification enrichments. Using effluent from a municipal wastewater treatment plant as water source, COD,nitrate and p H were controlled the same except for a gradient of biodegradable carbon(i.e., primary effluent(PE), secondary effluent(SE), or combined primary and secondary effluent(CE)). Inorganic synthetic water(IW) was used as a control. Hydrogenophaga, a major facultative autotroph, accounted for 17.1%, 5.3%, 32.7% and 12.9% of the sequences in PE, CE,SE and IW, respectively, implicating that Hydrogenophaga grew well with or without organics.Thauera, which contains likely obligate autotrophic denitrifiers, appeared to be the most dominant genera(23.6%) in IW and accounted for 2.5%, 4.6% and 8.9% in PE, CE and SE,respectively. Thermomonas, which is related to heterotrophic denitrification, accounted for 4.2% and 7.9% in PE and CE fed with a higher content of labile organics, respectively.In contrast, Thermomonas was not detected in IW and accounted for only 0.6% in SE. Our results suggest that Thermomonas are more competitive than Thauera in hydrogenotrophic denitrification with biodegradable organics. Moreover, facultative autotrophic denitrifiers,Hydrogenophaga, are accommodating to residual organic in effluent wastewater, thus we propose that hydrogenotrophic denitrification is amenable for tertiary nitrogen removal. 展开更多
关键词 Tertiary nitrogen removal hydrogenotrophic denitrification Residual organics High-throughput sequencing Hydrogenophaga
原文传递
Absolute dominance of hydrogenotrophic methanogens in full-scale anaerobic sewage sludge digesters 被引量:3
2
作者 Jaai Kim Woong Kim Changsoo Lee 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第11期2272-2280,共9页
Anaerobic digestion (AD) is gaining increasing attention due to the ability to covert organic pollutants into energy-rich biogas and, accordingly, growing interest is paid to the microbial ecology of AD systems. Des... Anaerobic digestion (AD) is gaining increasing attention due to the ability to covert organic pollutants into energy-rich biogas and, accordingly, growing interest is paid to the microbial ecology of AD systems. Despite extensive efforts, AD microbial ecology is still limitedly understood, especially due to the lack of quantitative information on the structures and dynamics of AD microbial communities. Such knowledge gap is particularly pronounced in sewage sludge AD processes although treating sewage sludge is among the major practical applications of AD. Therefore, we examined the microbial communities in three full-scale sewage sludge digesters using qualitative and quantitative molecular techniques in combination: denaturing gradient gel electrophoresis (DGGE) and real-time polymerase chain reaction (PCR). Eight out of eleven bacterial sequences retrieved from the DGGE analysis were not affiliated to any known species while all eleven archaeal sequences were assigned to known methanogen species. Quantitative real-time PCR analysis revealed that, based on the 16S rRNA gene abundance, the hydrogenotrophic order Methanomicrobiales is the most dominant methanogen group (〉 94% of the total methanogen population) in all digesters. This corresponds well to the prevailing occurrence of the DGGE bands related to Methanolinea and Methanospirillum, both belonging to the order Methanomicrobiales, in all sludge samples. It is therefore suggested that hydrogenotrophic methanogens, especially Methanomicrobiales strains, are likely the major players responsible for biogas production in the digesters studied. Our observation is contrary to the conventional understanding that aceticlastic methanogens generally dominate methanogen communities in stable AD environments, suggesting the need for further studies on the dominance relationship in various AD systems. 展开更多
关键词 anaerobic digestion hydrogenotrophic methanogens methanomicrobiales microbial community structure sewage sludge
原文传递
High rate production of concentrated sulfides from metal bearing wastewater in an expanded bed hydrogenotrophic sulfate reducing bioreactor 被引量:1
3
作者 Pieter Ostermeyer Josefien Van Landuyt +4 位作者 Luiza Bonin Karel Folens Adam Williamson Tom Hennebel Korneel Rabaey 《Environmental Science and Ecotechnology》 SCIE 2022年第3期49-56,共8页
Metallurgical wastewaters contain high concentrations of sulfate,up to 15 g L^(-1).Sulfate-reducing bioreactors are employed to treat these wastewaters,reducing sulfates to sulfides which subsequently coprecipitate me... Metallurgical wastewaters contain high concentrations of sulfate,up to 15 g L^(-1).Sulfate-reducing bioreactors are employed to treat these wastewaters,reducing sulfates to sulfides which subsequently coprecipitate metals.Sulfate loading and reduction rates are typically restricted by the total H2S concentration.Sulfide stripping,sulfide precipitation and dilution are the main strategies employed to minimize inhibition by H2S,but can be adversely compromised by suboptimal sulfate reduction,clogging and additional energy costs.Here,metallurgical wastewater was treated for over 250 days using two hydrogenotrophic granular activated carbon expanded bed bioreactors without additional removal of sulfides.H2S toxicity was minimized by operating at pH 8±0.15,resulting in an average sulfate removal of 7.08±0.08 g L^(-1),sulfide concentrations of 2.1±0.2 g L^(-1) and peaks up to 2.3±0.2 g L^(-1).A sulfate reduction rate of 20.6±0.9 g L^(-1)d^(-1) was achieved,with maxima up to 27.2 g L^(-1)d^(-1),which is among the highest reported considering a literature review of 39 studies.The rates reported here are 6e8 times higher than those reported for other reactors without active sulfide removal and the only reported for expanded bed sulfate-reducing bioreactors using H2.By increasing the influent sulfate concentration and maintaining high sulfide concentrations,sulfate reducers were promoted while fermenters and methanogens were suppressed.Industrial wastewater containing 4.4 g L^(-1) sulfate,0.036 g L^(-1) nitrate and various metals(As,Fe,Tl,Zn,Ni,Sb,Co and Cd)was successfully treated with all metal(loid)s,nitrates and sulfates removed below discharge limits. 展开更多
关键词 Sulfate reduction Sulfides High rate Metallurgical wastewater hydrogenotrophic expanded bed Microbial community analysis
原文传递
Microbial characteristics in anaerobic membrane bioreactor treating domestic sewage:Effects of HRT and process performance 被引量:1
4
作者 Jialing Ni Jiayuan Ji +1 位作者 Yu-You Li Kengo Kubota 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第1期392-399,共8页
Two anaerobic membrane bioreactors(AnMBRs)equipped with different membrane pore size(0.4 or 0.05μm)were operated at 25℃and fed with domestic wastewater.The hydraulic retention time(HRT)of the reactors was shortened.... Two anaerobic membrane bioreactors(AnMBRs)equipped with different membrane pore size(0.4 or 0.05μm)were operated at 25℃and fed with domestic wastewater.The hydraulic retention time(HRT)of the reactors was shortened.The microbial communities of the two AnMBRs were investigated by 16S rRNA gene amplicon sequencing to see the effects of HRT.The predominant Archaea was an aceticlastic methanogen Methanosaeta.The composition of hydrogenotrophic methanogens changed with the HRTs:the population of Methanobacterium was higher for longer HRTs,whereas the population of unclassified Methanoregulaceae was higher for shorter HRTs.The Anaerolineae,Bacteroidia and Clostridia bacteria were dominant in both of the reactors,with a combined relative abundance of over 55%.The relative abundance of Anaerolineae was proportional to the biogas production performance.The change in the population of hydrogenotrophic methanogens or Anaerolineae can be used as an indicator for process monitoring.The sum of the relative abundance of Anaerolineae and Clostridia fluctuated slightly with changes in the HRT in both AnMBRs when the reactor was stably operated.The co-occurrence analysis revealed the relative abundance of the operational taxonomic units belonging to Anaerolineae and Clostridia was functionally equivalent during the treatment of real domestic sewage.A principal coordination analysis revealed that the changes in the microbial community in each reactor were consistent with the change of HRT.In addition,both the HRT and the stability of the process are important factors for maintaining microbial community structures. 展开更多
关键词 Anaerobic membrane bioreactor Co-occurrence analysis hydrogenotrophic methanogen HRT Microbial community structure Principal coordinate analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部